找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Essentials of Python for Artificial Intelligence and Machine Learning; Pramod Gupta,Anupam Bagchi Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: Malnutrition
21#
發(fā)表于 2025-3-25 03:59:57 | 只看該作者
Book 2024the use of Python’s advanced module features and apply them in probability, statistical testing, signal processing, financial forecasting, and various other applications. This includes mathematical operations with array data structures, Data Manipulation, Data Cleaning, machine learning, Data pipeli
22#
發(fā)表于 2025-3-25 11:03:06 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:58 | 只看該作者
24#
發(fā)表于 2025-3-25 18:54:13 | 只看該作者
Citizenship Bound and Citizenship Unboundackage and the Pandas package. NumPy, short for Numerical Python, is one of the most important foundational packages for numerical computation in Python. Most computational packages providing scientific functionality use NumPy’s array objects for data exchange.
25#
發(fā)表于 2025-3-25 23:38:41 | 只看該作者
Introduction to NumPy,ackage and the Pandas package. NumPy, short for Numerical Python, is one of the most important foundational packages for numerical computation in Python. Most computational packages providing scientific functionality use NumPy’s array objects for data exchange.
26#
發(fā)表于 2025-3-26 01:01:55 | 只看該作者
27#
發(fā)表于 2025-3-26 06:32:04 | 只看該作者
2690-0300 in theindustry on using Python for AI and ML. Deployment on a cloud infrastructure is described in detail (with code) to emphasize real scenarios..978-3-031-43727-4978-3-031-43725-0Series ISSN 2690-0300 Series E-ISSN 2690-0327
28#
發(fā)表于 2025-3-26 12:30:50 | 只看該作者
Book 2024 techniques are provided along with examples. The authors also focus on the best practices in theindustry on using Python for AI and ML. Deployment on a cloud infrastructure is described in detail (with code) to emphasize real scenarios..
29#
發(fā)表于 2025-3-26 12:56:23 | 只看該作者
https://doi.org/10.1057/9780230305908das adopts many coding idioms from NumPy, the biggest difference is that Pandas is designed for working with tabular or heterogeneous data. NumPy by contrast is best suited for working with homogeneous numerical array data. Python with Pandas is used in a wide range of fields, such as academic resea
30#
發(fā)表于 2025-3-26 18:36:40 | 只看該作者
Introduction to Pandas,das adopts many coding idioms from NumPy, the biggest difference is that Pandas is designed for working with tabular or heterogeneous data. NumPy by contrast is best suited for working with homogeneous numerical array data. Python with Pandas is used in a wide range of fields, such as academic resea
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特前旗| 余庆县| 福建省| 新营市| 合山市| 北票市| 民丰县| 五指山市| 珠海市| 广汉市| 奉化市| 萍乡市| 高邑县| 合肥市| 苗栗市| 利川市| 霸州市| 古丈县| 灵丘县| 瓮安县| 象山县| 全椒县| 门头沟区| 石柱| 竹溪县| 商水县| 会东县| 江山市| 古浪县| 盘锦市| 北碚区| 宁河县| 靖安县| 克山县| 资源县| 商都县| 通许县| 肇州县| 翁牛特旗| 阿荣旗| 临夏市|