找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Essays in Group Theory; S. M. Gersten Book 1987 Springer-Verlag New York Inc. 1987 Group theory.algebra.group action.representation theory

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 09:57:54 | 只看該作者
Methods of forming clusters for objects,ections of this theory with hyperbolic geometry and with W. Thurston’s theory of measured laminations. The picture has been developed further by the above-mentioned people and also by H. Bass, M. Bestvina, M. Culler, H. Gillet, M. Gromov, W. Parry, F. Rimlinger and J. Stallings, among others.
12#
發(fā)表于 2025-3-23 17:16:07 | 只看該作者
13#
發(fā)表于 2025-3-23 20:31:28 | 只看該作者
Essays in Group Theory978-1-4613-9586-7Series ISSN 0940-4740
14#
發(fā)表于 2025-3-23 23:02:47 | 只看該作者
https://doi.org/10.1007/978-1-4613-9586-7Group theory; algebra; group action; representation theory
15#
發(fā)表于 2025-3-24 03:59:55 | 只看該作者
16#
發(fā)表于 2025-3-24 06:38:33 | 只看該作者
Laura H. Schulte,Stefania FerraroThe object of this note is to prove the following two theorems.
17#
發(fā)表于 2025-3-24 13:27:26 | 只看該作者
18#
發(fā)表于 2025-3-24 14:49:46 | 只看該作者
Affine Algebraic Sets and Some Infinite Finitely Presented Groups,The object of this note is to prove the following two theorems.
19#
發(fā)表于 2025-3-24 21:00:39 | 只看該作者
Reducible Diagrams and Equations Over Groups,Diagrammatic reducibility is related to the solution of equations over groups. Sufficient conditions for the reducibility of all spherical diagrams are given, unifying and generalizing work of Adian, Remmers, Lyndon, and Sieradski. Hyperbolic 2-complexes are defined and the word problem is solved for their fundamental groups.
20#
發(fā)表于 2025-3-25 03:15:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 08:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
依兰县| 池州市| 星子县| 花莲市| 浦城县| 金秀| 靖州| 台南县| 甘德县| 渭南市| 怀安县| 龙陵县| 汝城县| 济源市| 礼泉县| 南昌县| 贡山| 老河口市| 黄浦区| 孝义市| 奇台县| 唐河县| 朝阳区| 大化| 博乐市| 宁武县| 岳阳县| 大名县| 芜湖市| 咸宁市| 城固县| 永济市| 曲阜市| 泸水县| 吴江市| 民权县| 邻水| 精河县| 秦安县| 宁夏| 九江县|