找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ernst Equation and Riemann Surfaces; Analytical and Numer Christian Klein Book 2005 Springer-Verlag Berlin Heidelberg 2005 Einstein equatio

[復(fù)制鏈接]
樓主: gratuity
11#
發(fā)表于 2025-3-23 13:19:55 | 只看該作者
https://doi.org/10.1007/3-540-45267-2ary axisymmetric Einstein equations in vacuum. In fact the Ernst potential for the Kerr solution is just an algebraic function in suitable coordinates, see (1.8). In this chapter we study a dimensional reduction of the vacuum Einstein equations in the presence of two Killing vectors which will lead
12#
發(fā)表于 2025-3-23 17:06:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:50:05 | 只看該作者
Le Fort-V. Guillermo,Budnevich L. Carlosurface of the spectral parameter, the physical coordinates were .xed in a way that they did not coincide with the singularities of the matrix of the linear system. In the present chapter we want to investigate the behavior of the found solutions in dependence of the physical coordinates, especially
14#
發(fā)表于 2025-3-24 00:00:52 | 只看該作者
https://doi.org/10.1007/978-1-349-15071-7 rich classes of solutions which could describe the exterior gravitational .eld of stars and galaxies in thermodynamical equilibrium. In the present chapter we will use these methods to actually solve boundary value problems which are motivated by astrophysical models, in particular so-called dust d
15#
發(fā)表于 2025-3-24 04:55:31 | 只看該作者
https://doi.org/10.1007/978-3-658-12025-2we gave an explicit solution on a Riemann surface of genus 2 in Theorem 5.16 where the two counter-rotating dust streams have constant angular velocity and constant relative density. In the present chapter we discuss the physical features of the class of hyperelliptic solutions (4.19) which are a su
16#
發(fā)表于 2025-3-24 09:38:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:20:15 | 只看該作者
Christian KleinExamines in detail the solutions to the Ernst equation associated to Riemann surfaces.Physical and mathematical aspects of this class are discussed both analytically and numerically.This is the only b
18#
發(fā)表于 2025-3-24 18:37:32 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/e/image/314827.jpg
19#
發(fā)表于 2025-3-24 21:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 02:40:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨野县| 定结县| 图木舒克市| 闵行区| 贺州市| 肃北| 新化县| 舞阳县| 通许县| 阳泉市| 南陵县| 安徽省| 东兴市| 凤冈县| 彝良县| 阿鲁科尔沁旗| 阳原县| 台前县| 荔浦县| 贺州市| 襄城县| 嵊泗县| 竹溪县| 怀化市| 石首市| 东阳市| 平潭县| 普宁市| 蕉岭县| 和平县| 兴城市| 通州市| 张家界市| 高密市| 简阳市| 内江市| 大邑县| 佛山市| 安远县| 东乡县| 龙胜|