找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory, Open Dynamics, and Coherent Structures; Wael Bahsoun,Christopher Bose,Gary Froyland Conference proceedings 2014 Springer S

[復(fù)制鏈接]
樓主: CRUST
21#
發(fā)表于 2025-3-25 04:07:36 | 只看該作者
Conclusion: In the Spirit of Sankofa,For piecewise real analytic expanding Markov maps with Markov hole, it is shown that the escape rate and corresponding escape measure can be rapidly approximated using periodic points.
22#
發(fā)表于 2025-3-25 09:55:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:24:11 | 只看該作者
https://doi.org/10.1057/978-1-137-59077-0We consider open systems generated from one-dimensional maps that admit a finite Markov partition and use the recently developed theory of isospectral graph transformations to estimate a system’s survival probabilities. We show that these estimates are better than those obtained through a more direct approach.
24#
發(fā)表于 2025-3-25 16:15:34 | 只看該作者
https://doi.org/10.1057/9780230623200In the framework of abstract ergodic probability-preserving transformations, we prove that the limiting return-time statistics and hitting-time statistics persist if we pass from the original system to a first-return map and vice versa.
25#
發(fā)表于 2025-3-25 23:58:01 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:53 | 只看該作者
Periodic Points, Escape Rates and Escape Measures,For piecewise real analytic expanding Markov maps with Markov hole, it is shown that the escape rate and corresponding escape measure can be rapidly approximated using periodic points.
27#
發(fā)表于 2025-3-26 04:57:51 | 只看該作者
Lebesgue Ergodicity of a Dissipative Subtractive Algorithm,We prove Lebesgue ergodicity and exactness of a certain dissipative 2-dimensional subtractive algorithm, completing a partial answer by Fokkink et al. to a question by Schweiger. This implies for Meester’s subtractive algorithm in dimension . that there are . ? 2 parameters which completely determine the ergodic decomposition of Lebesgue measure.
28#
發(fā)表于 2025-3-26 11:33:23 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:55 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:07 | 只看該作者
Ergodic Theory, Open Dynamics, and Coherent Structures
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 社旗县| 安阳市| 南溪县| 甘泉县| 饶平县| 逊克县| 中方县| 东丰县| 鄂托克前旗| 凤山县| 皋兰县| 杭州市| 永兴县| 古蔺县| 青河县| 和平区| 镶黄旗| 建宁县| 来宾市| 柘城县| 合阳县| 西乡县| 石柱| 健康| 秦皇岛市| 梁山县| 柳州市| 忻城县| 禹城市| 武鸣县| 宁阳县| 鲁山县| 阿鲁科尔沁旗| 阿拉善右旗| 金坛市| 北安市| 吴忠市| 秀山| 大冶市| 宜春市|