找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Erdélyi–Kober Fractional Calculus; From a Statistical P A. M. Mathai,H. J. Haubold Book 2018 The Author(s), under exclusive licence to Spri

[復(fù)制鏈接]
樓主: GUAFF
11#
發(fā)表于 2025-3-23 10:17:03 | 只看該作者
https://doi.org/10.1007/978-1-4471-1735-3tor of the second kind or first kind. Other such analogues can be defined. The second kind fractional integrals will be considered first. In this chapter, multivariate case means the case of many real scalar variables.
12#
發(fā)表于 2025-3-23 14:00:25 | 只看該作者
Specific Issues under International Law,l scalar variable case is the one most frequently appearing in various theoretical and applied areas. Fractional calculus in the complex domain was considered only recently, see Mathai [2]. The following discussion is based on this work.
13#
發(fā)表于 2025-3-23 19:14:26 | 只看該作者
14#
發(fā)表于 2025-3-23 22:33:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:13 | 只看該作者
,Erdélyi-Kober Fractional Integrals in the Complex Domain,l scalar variable case is the one most frequently appearing in various theoretical and applied areas. Fractional calculus in the complex domain was considered only recently, see Mathai [2]. The following discussion is based on this work.
16#
發(fā)表于 2025-3-24 06:42:00 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:48:04 | 只看該作者
Jeremy Knox,Yuchen Wang,Michael Gallagherhapters the basic claim is that fractional integrals are of two kinds, the first kind or left-sided and the second kind or right-sided. The first kind of fractional integrals belong to the class of Mellin convolution of a ratio and the second kind of fractional integrals belong to the class of Melli
19#
發(fā)表于 2025-3-24 21:34:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:57:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清新县| 甘泉县| 呼图壁县| 西乌珠穆沁旗| 葫芦岛市| 太康县| 临澧县| 曲靖市| 仙居县| 宣汉县| 竹山县| 桐城市| 麻阳| 万山特区| 大关县| 郯城县| 庄浪县| 蕲春县| 汉中市| 阿图什市| 澄迈县| 民权县| 澎湖县| 伊春市| 商水县| 吉水县| 曲沃县| 商河县| 葵青区| 五常市| 甘南县| 昌吉市| 杭锦旗| 罗城| 潮安县| 小金县| 阿鲁科尔沁旗| 无锡市| 仪征市| 容城县| 临城县|