找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Erdélyi–Kober Fractional Calculus; From a Statistical P A. M. Mathai,H. J. Haubold Book 2018 The Author(s), under exclusive licence to Spri

[復(fù)制鏈接]
樓主: GUAFF
11#
發(fā)表于 2025-3-23 10:17:03 | 只看該作者
https://doi.org/10.1007/978-1-4471-1735-3tor of the second kind or first kind. Other such analogues can be defined. The second kind fractional integrals will be considered first. In this chapter, multivariate case means the case of many real scalar variables.
12#
發(fā)表于 2025-3-23 14:00:25 | 只看該作者
Specific Issues under International Law,l scalar variable case is the one most frequently appearing in various theoretical and applied areas. Fractional calculus in the complex domain was considered only recently, see Mathai [2]. The following discussion is based on this work.
13#
發(fā)表于 2025-3-23 19:14:26 | 只看該作者
14#
發(fā)表于 2025-3-23 22:33:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:13 | 只看該作者
,Erdélyi-Kober Fractional Integrals in the Complex Domain,l scalar variable case is the one most frequently appearing in various theoretical and applied areas. Fractional calculus in the complex domain was considered only recently, see Mathai [2]. The following discussion is based on this work.
16#
發(fā)表于 2025-3-24 06:42:00 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:48:04 | 只看該作者
Jeremy Knox,Yuchen Wang,Michael Gallagherhapters the basic claim is that fractional integrals are of two kinds, the first kind or left-sided and the second kind or right-sided. The first kind of fractional integrals belong to the class of Mellin convolution of a ratio and the second kind of fractional integrals belong to the class of Melli
19#
發(fā)表于 2025-3-24 21:34:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:57:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昔阳县| 万源市| 宁强县| 汾阳市| 禄丰县| 台州市| 黔西| 循化| 邹城市| 达日县| 霍山县| 叙永县| 阿合奇县| 巴彦县| 思南县| 定兴县| 长丰县| 石林| 合阳县| 肇州县| 谷城县| 玉溪市| 柯坪县| 博湖县| 宣化县| 会泽县| 合川市| 盐亭县| 姚安县| 洪雅县| 荔波县| 且末县| 安多县| 秦皇岛市| 神池县| 祥云县| 永定县| 濮阳市| 广饶县| 淳安县| 容城县|