找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: sustained
31#
發(fā)表于 2025-3-27 00:23:54 | 只看該作者
32#
發(fā)表于 2025-3-27 01:44:56 | 只看該作者
Various Notions of Equimultiple and Permissible Ideals,et (R,m) be a local ring and let p be a prime ideal of R. Recall that, by definition (10.10), s(p) ? 1 is the dimension of the fibre of the morphism . at the closed point m of Spec(R) (this fibre being Proj (G(p,R)?.R/m) . Likewise, if q is any prime ideal of R containing p, then s(pR.) ? 1 is the d
33#
發(fā)表于 2025-3-27 09:06:06 | 只看該作者
34#
發(fā)表于 2025-3-27 09:37:40 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:55:16 | 只看該作者
Generalized Cohen-Macaulay Rings and Blowing Up,ometry frequently. For example, if X?.. is an irreducible, non-singular projective variety over a field k, then the local ring at the vertex of the affine cone over X satisfies this property (cf. Hartshorne [1]; see also the remark at the end of § 35 in Chapter VII). The purpose of this chapter is t
37#
發(fā)表于 2025-3-27 23:52:11 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:47 | 只看該作者
Nonautonomous Dynamical Systems,in the study of the numerical behaviour of singularities under blowing up singular centers. In this Chapter V we want to show that these conditions are also of some use to investigate Cohen-Macaulay properties under blowing up, which are essential for the local and global study of algebraic varietie
39#
發(fā)表于 2025-3-28 06:51:56 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:09 | 只看該作者
Book 1988y for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate student
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昔阳县| 北京市| 潼关县| 万源市| 和田市| 威信县| 南川市| 介休市| 虞城县| 清涧县| 海阳市| 通州市| 大埔区| 平凉市| 灌云县| 郎溪县| 宜良县| 阜宁县| 长沙市| 巨鹿县| 英山县| 永仁县| 辽宁省| 日照市| 嘉峪关市| 石棉县| 东至县| 嵊泗县| 吉隆县| 通榆县| 咸宁市| 灵川县| 静海县| 昌图县| 大悟县| 礼泉县| 循化| 咸宁市| 溧阳市| 安义县| 南昌县|