找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equilibrium Theory in Infinite Dimensional Spaces; M. Ali Khan,Nicholas C. Yannelis Book 1991 Springer-Verlag Berlin Heidelberg 1991 Gleic

[復(fù)制鏈接]
樓主: 動詞
11#
發(fā)表于 2025-3-23 13:32:21 | 只看該作者
https://doi.org/10.1007/978-3-319-21106-0in the presence of infinitely many commodities the Aumann (1964, 1966) measure space of agents, i.e., the interval [0,1] endowed with Lebesgue measure, is not appropriate to model the idea of perfect competition and we provide a characterization of the “appropriate” measure space of agents in an inf
12#
發(fā)表于 2025-3-23 16:21:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:44 | 只看該作者
Topological Analysis of the Fukui Functionrinciple is proven, and the set of equilibria is compared with the sets of strategy and action correlated equilibria. The equilibrium correspondence is shown to be discontinuous with respect to the information structure of the game, in contrast with previous continuity results for strategy and actio
14#
發(fā)表于 2025-3-23 22:59:40 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:12:44 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:56 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:29 | 只看該作者
Applications of Synchrotron RadiationThe equilibrium existence theorem we obtain resembles Robert Aumann’s (1966) Auxiliary Theorem, in which he assumes that preferences are commodity-wise saturated. Our result may therefore be looked upon as a first step towards a satisfactory existence theorem for .. (if such a theorem exists).
19#
發(fā)表于 2025-3-24 20:58:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:57 | 只看該作者
https://doi.org/10.1007/978-3-540-49556-7We provide sufficient conditions which guarantee the existence of correlated equilibria in noncooperative games with finitely many players.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
确山县| 鹤壁市| 尼玛县| 磐石市| 雷波县| 叙永县| 柳河县| 轮台县| 乐平市| 缙云县| 龙游县| 纳雍县| 西华县| 怀宁县| 浦城县| 绥化市| 沙坪坝区| 曲阜市| 蓬安县| 通江县| 岑巩县| 古丈县| 吕梁市| 河东区| 盐源县| 会昌县| 离岛区| 潜江市| 林周县| 花莲市| 苍梧县| 四子王旗| 霍城县| 翁源县| 商南县| 沾益县| 苍山县| 铁力市| 华安县| 霍林郭勒市| 崇义县|