找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees; Applications to Non- Anne Broise-Alamichel,Jouni Pa

[復(fù)制鏈接]
樓主: Maudlin
21#
發(fā)表于 2025-3-25 04:05:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:13:59 | 只看該作者
Application of Bamboo in Building EnvelopeIn this chapter, we give background information and preliminary results on the main link between the geometry and the algebra used for our arithmetic applications: the (discrete-time) geodesic ow on quotients of Bruhat{Tits trees by arithmetic lattices.
23#
發(fā)表于 2025-3-25 14:24:03 | 只看該作者
Susan E. Swedo,Judith L. RapoportLet K be a (global) function field over F. of genus g, let v be a (normaliseddiscrete) valuation of K, let K. be the associated completion of K, and let R.be the affine function ring associated with v.
24#
發(fā)表于 2025-3-25 15:54:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:33 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:47 | 只看該作者
Potentials, Critical Exponents,and Gibbs CocyclesLet X be a geodesically complete proper CAT(–1) space, let x. ∈ X be an arbitrary basepoint, and let Γ be a nonelementary discrete group of isometries of X.
27#
發(fā)表于 2025-3-26 08:08:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:11 | 只看該作者
Symbolic Dynamics of Geodesic Flows on TreesIn this chapter, we give a coding of the discrete-time geodesic ow on the nonwandering sets of quotients of locally finite simplicial trees X without terminal vertices by nonelementary discrete subgroups of Aut(X) by a subshift of finite type on a countable alphabet.
29#
發(fā)表于 2025-3-26 14:23:57 | 只看該作者
Random Walks on Weighted Graphs of GroupsLet X be a locally finite simplicial tree without terminal vertices, and let X = ∣X∣.be its geometric realisation. Let Γ be a nonelementary discrete subgroup of Aut(X).
30#
發(fā)表于 2025-3-26 20:09:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 响水县| 成武县| 永定县| 当阳市| 黄浦区| 武安市| 灵璧县| 绥化市| 谢通门县| 乌兰浩特市| 吴川市| 祁东县| 巨野县| 新源县| 淮滨县| 桃园县| 隆昌县| 乐清市| 蒙自县| 五峰| 海阳市| 乌鲁木齐市| 红原县| 平遥县| 芦山县| 神木县| 葫芦岛市| 台湾省| 固安县| 广德县| 即墨市| 中方县| 会东县| 久治县| 巴彦县| 合阳县| 阿勒泰市| 崇文区| 新巴尔虎左旗| 马公市|