找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Evolutionary Intelligent Systems; Ajith Abraham,Crina Grosan,Witold Pedrycz Book 2008 Springer-Verlag Berlin Heidelberg 2008 E

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:09:26 | 只看該作者
22#
發(fā)表于 2025-3-25 09:37:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:19:52 | 只看該作者
Engineering Evolutionary Intelligent Systems: Methodologies, Architectures and Reviews,olving complexity, noisy environment, imprecision, uncertainty and vagueness. In this Chapter, we illustrate the various possibilities for designing intelligent systems using evolutionary algorithms and also present some of the generic evolutionary design architectures that has evolved during the la
24#
發(fā)表于 2025-3-25 17:53:39 | 只看該作者
Genetically Optimized Hybrid Fuzzy Neural Networks: Analysis and Design of Rule-based Multi-layer Pmethodology supporting their construction. A series of of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). T
25#
發(fā)表于 2025-3-25 20:29:01 | 只看該作者
Genetically Optimized Self-organizing Neural Networks Based on Polynomial and Fuzzy Polynomial Neurptimized multilayer perceptron with polynomial neurons (PNs) or fuzzy polynomial neurons (FPNs), develop a comprehensive design methodology involving mechanisms of genetic optimization and carry out a series of numeric experiments. The conventional SONN is based on a self-organizing and an evolution
26#
發(fā)表于 2025-3-26 00:53:42 | 只看該作者
Evolution of Inductive Self-organizing Networks,zing network dwells on the idea of group method of data handling. The performances of the network depend strongly on the number of input variables available to the model, the number of input variables, and type (order) of the polynomials to each node. They must be fixed by the designer in advance be
27#
發(fā)表于 2025-3-26 07:52:22 | 只看該作者
Recursive Pattern based Hybrid Supervised Training,pseudo global optimal solutions to evolve a set of neural networks, each of which can solve correctly a subset of patterns. The pattern-based algorithm uses the topology of training and validation data patterns to find a set of pseudo-optima, each learning a subset of patterns. It is therefore well
28#
發(fā)表于 2025-3-26 11:15:22 | 只看該作者
29#
發(fā)表于 2025-3-26 15:21:29 | 只看該作者
30#
發(fā)表于 2025-3-26 18:08:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修文县| 柳州市| 合作市| 凤山市| 乳山市| 安乡县| 抚顺县| 开阳县| 长葛市| 崇明县| 准格尔旗| 广平县| 凤翔县| 蓬莱市| 环江| 普宁市| 大名县| 龙口市| 永丰县| 石河子市| 柳江县| 南涧| 赤壁市| 延川县| 锦州市| 莱州市| 枝江市| 安塞县| 河北区| 铜鼓县| 民丰县| 宁安市| 瑞金市| 东莞市| 桐柏县| 济宁市| 永川市| 称多县| 曲阳县| 辽阳市| 集贤县|