找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 19th International C Elias Pimenidis,Chrisina Jayne Conference proceedings 2018 Springer Natur

[復(fù)制鏈接]
樓主: 嬉戲
31#
發(fā)表于 2025-3-26 22:27:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:02:35 | 只看該作者
33#
發(fā)表于 2025-3-27 08:10:35 | 只看該作者
34#
發(fā)表于 2025-3-27 12:31:55 | 只看該作者
RR-FCN: Rotational Region-Based Fully Convolutional Networks for Object Detectiono not consider rotation, our region-based detector incorporates rotational invariance into networks efficiently and generate more appropriate features according to the rotation angle. Specifically, we propose component-sensitive feature maps, rotational RoI pooling and interceptive back propagation
35#
發(fā)表于 2025-3-27 17:10:32 | 只看該作者
36#
發(fā)表于 2025-3-27 19:20:55 | 只看該作者
Smoothing Regularized Extreme Learning?Machineever, in order to guarantee the convergence of the ELM algorithm, it initially requires a large number of hidden nodes. In addition, extreme learning machines have two drawbacks: over-fitting and the sensitivity of accuracy to the number of hidden nodes. The aim of this paper is to propose a new smo
37#
發(fā)表于 2025-3-27 23:32:28 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:17 | 只看該作者
Machine Learning with the Pong Game: A Case Studyroblems in Artificial Intelligence and Machine Learning: The goal is to create a self-playing agent that can compete against humans. In the past there have been introduced various Machine Learning approaches to solve this problem. This paper gives a summary of some notable techniques to creating a s
39#
發(fā)表于 2025-3-28 09:12:18 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:29 | 只看該作者
Network Intrusion Detection on Apache Spark with Machine Learning Algorithms to detect network attacks, and therefore requires more efficient and faster data processing methods to ensure network security. For this purpose, many intrusion detection systems have been developed and development works are continuing..This study; by comparing the performance of machine learning a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巧家县| 五常市| 正宁县| 日喀则市| 仁布县| 荔浦县| 克山县| 西城区| 虹口区| 且末县| 武冈市| 石家庄市| 略阳县| 舒城县| 临潭县| 宿松县| 达日县| 鱼台县| 历史| 诸城市| 凤冈县| 丰台区| 德清县| 新竹市| 沙坪坝区| 庆元县| 商南县| 二连浩特市| 昭苏县| 清水县| 汾西县| 东平县| 三门峡市| 武胜县| 大新县| 荃湾区| 徐水县| 晋城| 吉林省| 抚宁县| 池州市|