找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Energy Flow Theory of Nonlinear Dynamical Systems with Applications; Jing Tang Xing Book 2015 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: fundoplication
41#
發(fā)表于 2025-3-28 18:32:02 | 只看該作者
42#
發(fā)表于 2025-3-28 22:26:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:31:54 | 只看該作者
Sozialpsychiatrie als Wirkungsforschung,he energy flow behaviour of fixed points, periodical solutions or closed orbits as well as their stabilities. Some stability theorems in the energy flow forms are presented and two examples, a planar system and the Van der Pol’s equation are investigated to illustrate the applications of the develop
44#
發(fā)表于 2025-3-29 04:41:02 | 只看該作者
https://doi.org/10.1007/978-3-662-25039-6r dynamical system is expanded into the Taylor series at zero equilibrium point, and is approximated to the first order of disturbance. The corresponding energy flow equation is approximated to the form of second order of disturbance. Using a summation decomposition of a matrix, the non-symmetrical
45#
發(fā)表于 2025-3-29 10:23:44 | 只看該作者
46#
發(fā)表于 2025-3-29 11:51:17 | 只看該作者
Sozialpsychologie der Organisationow theorem relying upon the coordinate transformations transforms the general system into its normal form in the energy flow space, from which dynamical information can be deduced from the Taylor series of an energy flow at a single point. In this chapter, we shall consider dynamical properties whic
47#
發(fā)表于 2025-3-29 17:02:04 | 只看該作者
48#
發(fā)表于 2025-3-29 21:17:18 | 只看該作者
Rechtsextremismus in der Psychotherapiem and Marsden (1978 / 1980); Guckenheimer and Holmes (1983); Thompson and Stewart (1986); Zhu (1996, 2003). This chapter discusses the Hamiltonian system from the point view of energy flows. After giving the general fundamental equation governing Hamiltonian systems, its energy flow equations as wel
49#
發(fā)表于 2025-3-30 02:17:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼中| 阳高县| 北碚区| 交城县| 伽师县| 文昌市| 昭平县| 梓潼县| 咸丰县| 东阳市| 临桂县| 万荣县| 神木县| 佛山市| 新营市| 得荣县| 大同县| 右玉县| 德保县| 曲阳县| 潮安县| 曲麻莱县| 华亭县| 佛坪县| 静安区| 临洮县| 福清市| 德格县| 寻甸| 息烽县| 门头沟区| 天等县| 刚察县| 略阳县| 阜城县| 边坝县| 山阳县| 苗栗县| 翁牛特旗| 平远县| 星子县|