找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining; Nitin Agarwal,Nima Dokoohaki,Serpil To

[復(fù)制鏈接]
樓主: 悲傷我
31#
發(fā)表于 2025-3-26 21:04:02 | 只看該作者
Predictive Analysis on Twitter: Techniques and Applications essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques
32#
發(fā)表于 2025-3-27 03:29:53 | 只看該作者
Using Subgraph Distributions for Characterizing Networks and Fitting Random Graph Models local topological features of a network. This is relevant, for example, when fitting a random graph model to a real-world network. With respect to existing measures the model might look like a good fit, however, the local topology might be very different. In the article we propose a new characteriz
33#
發(fā)表于 2025-3-27 05:36:50 | 只看該作者
34#
發(fā)表于 2025-3-27 10:30:30 | 只看該作者
35#
發(fā)表于 2025-3-27 14:15:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:41:47 | 只看該作者
Domain-Specific Use Cases for Knowledge-Enabled Social Media Analysisccounts readily generate Big Data marked by velocity, volume, value, variety, and veracity challenges. This type of Big Data analytics already supports useful investigations ranging from research into data mining and developing public policy to actions targeting an individual in a variety of domains
37#
發(fā)表于 2025-3-28 01:35:04 | 只看該作者
38#
發(fā)表于 2025-3-28 03:45:01 | 只看該作者
39#
發(fā)表于 2025-3-28 06:39:16 | 只看該作者
Deepak Kakadia,Jin Yang,Alexander Gilgure is a group of users in which everyone is a friend to all other group members. Interactions between cliques’ members are studied in different networks for knowledge extraction. We introduced the concept of “weighted cliques” in comparison with classical cliques to provide better understanding of us
40#
發(fā)表于 2025-3-28 13:49:50 | 只看該作者
Common Network Pharmacology Databases,the analysis of overlapping communities. Overlapping community structures are suitable indicators as for a real analysis in this domain. As such, we propose a two-phase algorithm based on two significant rather simple social dynamics named Disassortative degree Mixing and Information Diffusion—this
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井冈山市| 泰兴市| 乌拉特前旗| 呼图壁县| 鲜城| 农安县| 永嘉县| 泸西县| 怀宁县| 福鼎市| 城口县| 江西省| 宝鸡市| 和林格尔县| 军事| 垫江县| 建阳市| 龙门县| 清新县| 湟中县| 乌鲁木齐市| 永泰县| 嘉义市| 虞城县| 都江堰市| 临夏县| 绥化市| 巴里| 浦城县| 通江县| 北辰区| 奉化市| 秀山| 上栗县| 西乡县| 来宾市| 景德镇市| 南投县| 酒泉市| 台东市| 壤塘县|