找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptically Contoured Models in Statistics and Portfolio Theory; Arjun K. Gupta,Tamas Varga,Taras Bodnar Book 2013Latest edition Springer

[復(fù)制鏈接]
樓主: 我贊成
31#
發(fā)表于 2025-3-26 21:46:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:43:09 | 只看該作者
33#
發(fā)表于 2025-3-27 05:49:33 | 只看該作者
Hypothesis TestingBefore studying concrete hypotheses, we derive some general theorems. These results are based on Anderson, Fang, and Hsu (.) and Hsu (.).
34#
發(fā)表于 2025-3-27 12:24:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:49 | 只看該作者
https://doi.org/10.1007/978-3-662-28439-1mal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
36#
發(fā)表于 2025-3-27 18:58:10 | 只看該作者
37#
發(fā)表于 2025-3-27 23:58:16 | 只看該作者
Mixtures of Normal Distributionsmal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
38#
發(fā)表于 2025-3-28 03:11:49 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:16 | 只看該作者
Preliminariesese distributions provedto be useful in statistical inference. For example, the Wishart distribution is essential when studying the sample covariance matrix in the multivariate normal theory. Random matricescan also be used to describe repeated measurements on multivariate variables. In this case,th
40#
發(fā)表于 2025-3-28 12:16:12 | 只看該作者
Basic Propertiesand Sutradhar and Ali(1989). We use the definition given in Gupta and Varga (1994b). Moreover, we present somebasic properties of matrix variate elliptically contoured distributions, such as the stochasticrepresentation, the conditional and marginal distributions. Finally, several families of matrix
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝丰县| 阜康市| 龙陵县| 蒙城县| 石台县| 奉贤区| 进贤县| 特克斯县| 盐城市| 沧源| 樟树市| 平遥县| 贵港市| 会泽县| 上饶市| 淄博市| 泰来县| 屏东县| 清河县| 乐业县| 普定县| 衡阳县| 方城县| 莒南县| 淮滨县| 中宁县| 济阳县| 五原县| 东兴市| 宁南县| 米易县| 六枝特区| 定陶县| 双牌县| 张家界市| 贵定县| 汉阴县| 忻州市| 武汉市| 巨野县| 珲春市|