找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic and Parabolic Equations; Hannover, September Joachim Escher,Elmar Schrohe,Christoph Walker Conference proceedings 2015 Springer I

[復(fù)制鏈接]
樓主: 注射
21#
發(fā)表于 2025-3-25 04:39:21 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:14 | 只看該作者
https://doi.org/10.1057/9780230236622rely on a generalized maximum principle which allows gradient estimates in the Riemannian setting to be directly applied to the Bakry–émery setting. Lower bounds for all eigenvalues are demonstrated using heat kernel estimates and a suitable Sobolev inequality.
23#
發(fā)表于 2025-3-25 13:10:16 | 只看該作者
24#
發(fā)表于 2025-3-25 16:08:11 | 只看該作者
25#
發(fā)表于 2025-3-25 21:17:16 | 只看該作者
Uniformly Regular and Singular Riemannian Manifolds,e of fundamental importance for a Sobolev space solution theory for parabolic evolution equations on noncompact Riemannian manifolds with and without boundary. Besides pointing out this connection in some detail we present large families of uniformly regular and singular manifolds which are admissible for this analysis.
26#
發(fā)表于 2025-3-26 03:53:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:33 | 只看該作者
Aspects of the Mathematical Analysis of Nonlinear Stratified Water Waves,which is of great physical and geophysical importance. In this chapter, we present an overview of some recently derived rigorous analytical results for nonlinear steady periodic stratified water waves.
28#
發(fā)表于 2025-3-26 10:39:10 | 只看該作者
On Bifurcation for Semilinear Elliptic Dirichlet Problems on Shrinking Domains,rom a given (trivial) branch of solutions, where the radius of the ball serves as bifurcation parameter. Our methods are based on well-known results from variational bifurcation theory, which we outline in a separate section for the readers’ convenience.
29#
發(fā)表于 2025-3-26 13:25:28 | 只看該作者
978-3-319-38150-3Springer International Publishing Switzerland 2015
30#
發(fā)表于 2025-3-26 19:17:44 | 只看該作者
Elliptic and Parabolic Equations978-3-319-12547-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 09:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆河县| 慈溪市| 两当县| 莱西市| 抚顺市| 静宁县| 江北区| 上思县| 崇明县| 横山县| 兰溪市| 屏边| 湾仔区| 准格尔旗| 无极县| 邹城市| 新沂市| 娄底市| 民和| 婺源县| 庆阳市| 桦甸市| 会宁县| 蒲江县| 河北区| 通州市| 建德市| 施甸县| 长海县| 曲周县| 兴山县| 巴林左旗| 江津市| 崇信县| 清水县| 剑河县| 福海县| 塘沽区| 河曲县| 鄯善县| 广州市|