找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Functions; Komaravolu Chandrasekharan Textbook 1985 Springer-Verlag Berlin Heidelberg 1985 Complex analysis.Functions.Meromorphic

[復(fù)制鏈接]
樓主: OBESE
21#
發(fā)表于 2025-3-25 06:29:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:00 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:27:30 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:19 | 只看該作者
Periods of meromorphic functions,We assume as known the fundamentals of complex analysis, including the basic properties of . and of . functions in the . The meromorphic functions defined on an ., set in the complex plane form a . Unless otherwise qualified, a meromorphic function is supposed to mean a function meromorphic in the whole complex plane.
26#
發(fā)表于 2025-3-26 00:49:55 | 只看該作者
General properties of elliptic functions,Given an elliptic function ., let (. .) be a pair of . periods for its period-lattice {. .}, where m, . = 0, ±1, ±2,....
27#
發(fā)表于 2025-3-26 04:52:48 | 只看該作者
The zeta-function and the sigma-function of Weierstrass,Weierstrass’s ζ-function is a meromorphic function, which has . poles, with residues equal to one, at all points which correspond to the periods of Weierstrass’s ?-function. It is . elliptic. But every elliptic function can be expressed in terms of ζ and its derivatives; in fact ζ.(.)= -?(.).
28#
發(fā)表于 2025-3-26 10:11:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:57 | 只看該作者
The law of quadratic reciprocity,As a limiting case of the transformation formula connecting the theta-function .(., .) with ., we shall prove a transformation formula for exponential sums (Theorem 1), which yields, as a special case, a reciprocity formula for . (Corollary 2) which, in turn, enables us not only to evaluate . but to prove the law of quadratic reciprocity.
30#
發(fā)表于 2025-3-26 17:27:55 | 只看該作者
,Dedekind’s η-function and Euler’s theorem on pentagonal numbers,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民乐县| 休宁县| 廉江市| 遂溪县| 藁城市| 刚察县| 合水县| 武定县| 阜新市| 鄂托克前旗| 临潭县| 金秀| 肃南| 连平县| 龙川县| 高陵县| 屏南县| 健康| 揭阳市| 喀什市| 安西县| 鹿邑县| 定陶县| 连江县| 射洪县| 武汉市| 永顺县| 宜城市| 丹凤县| 日土县| 泾源县| 驻马店市| 东丽区| 谢通门县| 九龙城区| 嘉禾县| 盐源县| 那曲县| 什邡市| 洛浦县| 张家口市|