找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[復制鏈接]
樓主: Malinger
41#
發(fā)表于 2025-3-28 18:00:56 | 只看該作者
https://doi.org/10.1007/978-3-662-28432-2patible systems. Our main result is that in a sufficiently irreducible compatible system the residual images are big at a density one set of primes. This result should make some of the work of Clozel, Harris and Taylor easier to apply in the setting of compatible systems.
42#
發(fā)表于 2025-3-28 20:31:03 | 只看該作者
43#
發(fā)表于 2025-3-29 01:31:07 | 只看該作者
Compactifications of S-arithmetic Quotients for the Projective General Linear Group,metric space (resp., Bruhat-Tits building) associated to . if . is archimedean (resp., non-archimedean). In this paper, we construct compactifications . of the quotient spaces . for .-arithmetic subgroups . of .. The constructions make delicate use of the maximal Satake compactification of . (resp.,
44#
發(fā)表于 2025-3-29 05:47:44 | 只看該作者
,Control of ,-adic Mordell–Weil Groups,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
45#
發(fā)表于 2025-3-29 09:07:37 | 只看該作者
Some Congruences for Non-CM Elliptic Curves,ents of Iwasawa algebras of abelian sub-quotients of . due to the work of Ritter-Weiss and Kato (generalised by the author). In the former one needs to work with all abelian subquotients of . whereas in Kato’s approach one can work with a certain well-chosen sub-class of abelian sub-quotients of ..
46#
發(fā)表于 2025-3-29 13:52:02 | 只看該作者
,On ,-adic Interpolation of Motivic Eisenstein?Classes, étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
47#
發(fā)表于 2025-3-29 18:21:28 | 只看該作者
48#
發(fā)表于 2025-3-29 23:02:01 | 只看該作者
,Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e
49#
發(fā)表于 2025-3-30 01:36:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武穴市| 鱼台县| 青铜峡市| 新野县| 土默特右旗| 水富县| 油尖旺区| 疏附县| 电白县| 易门县| 衡山县| 安平县| 莫力| 灵璧县| 甘泉县| 额济纳旗| 贡嘎县| 囊谦县| 九龙城区| 沁水县| 天等县| 漳州市| 互助| 奉贤区| 抚远县| 靖江市| 普定县| 马山县| 四平市| 嫩江县| 安陆市| 皋兰县| 元氏县| 安宁市| 漠河县| 荥经县| 达孜县| 吐鲁番市| 治多县| 石门县| 佛山市|