找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Cryptography; Proceedings of the A Ashwani K. Bhandari,D. S. Nagaraj,T. N. Venkataram Conference proceed

[復(fù)制鏈接]
樓主: 不幸的你
31#
發(fā)表于 2025-3-26 23:49:38 | 只看該作者
32#
發(fā)表于 2025-3-27 04:59:03 | 只看該作者
Fourier-Reihen und Fourier-Transformation, this part of the book various aspects of the theory of Elliptic curves are treated. Here we give a brief description of the contents of the articles in the order in which they appear. Firstly, there is a quick introductory article by D.S. Nagaraj and B. Sury, in which some basic notations of algebr
33#
發(fā)表于 2025-3-27 07:32:30 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:40 | 只看該作者
Grundlagen der mathematischen Statistik,oup. In other words, .(.) ? ?. ⊕ . where . is a finite abelian group, the torsion subgroup. One refers to .(.) as the Mordell-Weil group of . over .. Geometrically, if one is given a system of generators for .(.), then one can produce all the points by the chord and tangent process. This means that
35#
發(fā)表于 2025-3-27 13:58:32 | 只看該作者
,Gew?hnliche Differentialgleichungen, a central role in many questions about elliptic curves with Complex Multiplication (also called CM elliptic curves for short). The theorem gives precise information about the field obtained by attaching the (co-ordinates of) torsion points of Complex Multiplication elliptic curves.
36#
發(fā)表于 2025-3-27 20:47:54 | 只看該作者
37#
發(fā)表于 2025-3-28 01:22:16 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:20 | 只看該作者
Komplexe Zahlen und Funktionen,rve C of genus . over .. The idea is to show how the arithmetic properties of algebraic curves are governed by the familiar trichotomy: . = 0, . = 1, . ≥ 2. Only incidentally shall we mention fields other than . and varieties other than curves.
39#
發(fā)表于 2025-3-28 07:41:12 | 只看該作者
https://doi.org/10.1007/978-3-8348-8643-9se branches of Mathematics coming together in the theory of Elliptic Curves and Modular Forms to solve one of the outstanding problems in Number Theory, viz., ‘The Fermat’s Last Theorem’. In Part I of this volume, various aspects of the theory of Elliptic Curves are given. In Part II, we discuss som
40#
發(fā)表于 2025-3-28 14:06:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
讷河市| 巴楚县| 丽江市| 麟游县| 龙岩市| 天台县| 明水县| 云和县| 长沙市| 石楼县| 卢氏县| 张家口市| 阜新| 永福县| 遂川县| 东城区| 溆浦县| 宁波市| 刚察县| 鹤山市| 曲阳县| 阳山县| 华安县| 马关县| 筠连县| 铁力市| 班戈县| 宜兴市| 河池市| 屯留县| 宜黄县| 三穗县| 铜山县| 芜湖县| 岳阳县| 会东县| 巴里| 株洲县| 株洲市| 木兰县| 绥棱县|