找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves; Diophantine Analysis Serge Lang Book 1978 Springer-Verlag Berlin Heidelberg 1978 Algebra.Arithmetic.Curves.Diophantische A

[復制鏈接]
樓主: 法庭
41#
發(fā)表于 2025-3-28 16:38:41 | 只看該作者
42#
發(fā)表于 2025-3-28 21:00:00 | 只看該作者
Book 1978-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
43#
發(fā)表于 2025-3-28 23:58:06 | 只看該作者
Jing Wang,Lingjun Ma,Fei Zhou,Fang Wang,Lei Chen,Jianbo Xiaoecondary ITP. It is imperative to consider risk factors in an individual patient basis. For example, elderly in . epidemic countries, such as East Asia and Italy, should be considered for performing . testing, homosexuals and drug abusers for performing HIV and HCV testing, and young women with a ra
44#
發(fā)表于 2025-3-29 06:06:07 | 只看該作者
45#
發(fā)表于 2025-3-29 08:21:38 | 只看該作者
Ahmed Elkaseer,Amon Scholz,Steffen G. Scholz at the classroom and school levels. By documenting these accounts and linking them to student learning outcomes, the school will lead the way in providing possible models for the seamless and pervasive integration of informati978-94-6209-086-6
46#
發(fā)表于 2025-3-29 12:24:31 | 只看該作者
e world.Discusses significant research problems, gives rigorThis book contains an up-to-date survey and self-contained chapters on contact slant submanifolds and geometry, authored by internationally renowned researchers. The notion of slant submanifolds was introduced by Prof. B.Y. Chen in 1990, an
47#
發(fā)表于 2025-3-29 17:09:38 | 只看該作者
48#
發(fā)表于 2025-3-29 20:07:19 | 只看該作者
nce their child’s development at different ages based?on their health condition. In addition, .Enhancing Early Child Development: A Handbook for Clinicians., incorporates a summary of the manual entitled "Couns978-1-4614-4826-6978-1-4614-4827-3
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 14:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南昌市| 醴陵市| 瓮安县| 新营市| 泉州市| 武宣县| 凤阳县| 汾阳市| 盖州市| 美姑县| 亳州市| 兴宁市| 满城县| 江安县| 江都市| 宁陵县| 西丰县| 攀枝花市| 临邑县| 阿勒泰市| 金川县| 冀州市| 年辖:市辖区| 白朗县| 合川市| 威宁| 兴化市| 宕昌县| 商河县| 平乐县| 库伦旗| 项城市| 靖远县| 阜新市| 屯门区| 南京市| 丰原市| 南昌县| 闵行区| 翁源县| 铜川市|