找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1996 Springer Science+Business Media Dordrecht 1996 B

[復(fù)制鏈接]
樓主: otitis-externa
21#
發(fā)表于 2025-3-25 06:16:14 | 只看該作者
978-94-010-6276-3Springer Science+Business Media Dordrecht 1996
22#
發(fā)表于 2025-3-25 10:10:52 | 只看該作者
Overview: 978-94-010-6276-3978-94-011-5410-9
23#
發(fā)表于 2025-3-25 11:46:17 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:38 | 只看該作者
25#
發(fā)表于 2025-3-25 23:01:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:11 | 只看該作者
Elliptic Problems with Normal Boundary Conditions,ction 1.10). Below, we consider only special local coordinates defined in a sufficiently small neighborhood .(..) of every point .. ∈ ?.. If (.′,…, .′.) is any other system of special coordinates in G ∩ ., then, in . ∩ . ∩) G, we have . and the determinant of the Jacobi matrix det .′/. of this transformation is not equal to zero.
27#
發(fā)表于 2025-3-26 04:50:22 | 只看該作者
Construction of a Regular Heptadecagon,o [Agm], [AgN], and [Som]) as a class of elliptic boundary-value problems with a parameter. In the papers mentioned above, elliptic boundary-value problems with a parameter were studied in classes of sufficiently smooth functions. In [Roi18]-[Roi20], [RoS1], and [RoS2], these problems were investigated in spaces of generalized functions.
28#
發(fā)表于 2025-3-26 12:20:14 | 只看該作者
Estimation in Parametric Models, function in G such that .(.) = 1 for dist (.,?.)≤ε and .(.) = 0 for dist(.,?.)≥ 2ε (ε > 0 is a sufficiently small number), then the rth-order expression . satisfies condition (6.1.4) but is not elliptic at any point of ?..
29#
發(fā)表于 2025-3-26 16:06:42 | 只看該作者
30#
發(fā)表于 2025-3-26 20:27:33 | 只看該作者
https://doi.org/10.1007/978-90-481-3747-3 Thus, even in the case where the defect of problem (7.1.3) is equal to zero ., the problem with power singularities on the right-hand sides admits numerous solutions. To choose a unique solution, it is necessary to impose additional restrictions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
突泉县| 大悟县| 彭阳县| 德化县| 静乐县| 嘉义市| 康定县| 江达县| 黎川县| 丰县| 佛教| 荥经县| 龙山县| 余干县| 夹江县| 辽中县| 濉溪县| 平乐县| 武川县| 英超| 宜兰市| 广德县| 平昌县| 巴彦县| 贵溪市| 陆川县| 崇文区| 黄山市| 阳原县| 永康市| 东山县| 南丰县| 肃宁县| 焉耆| 鸡东县| 梧州市| 永丰县| 巴里| 濮阳县| 应城市| 江安县|