找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Value Problems and Construction of Lp-Strong Feller Processes with Singular Drift ; Benedict Baur Book 2014 Springer Fac

[復(fù)制鏈接]
樓主: PEL
21#
發(fā)表于 2025-3-25 06:53:01 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:22 | 只看該作者
Mathematical Problems and ProofsThe aim of this chapter is to prove a Sobolev space regularity result for weak solutions of elliptic equations. This result will be used for the construction of .-strong Feller processes in the next chapter. It will be also used for the construction of the boundary local time.
23#
發(fā)表于 2025-3-25 13:43:42 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:21 | 只看該作者
Introduction,This thesis consists of three main parts: First, the construction of .-strong Feller processes from sub-Markovian strongly continuous contraction semigroups on .-spaces that are associated with symmetric regular Dirichlet forms, see Chapter 2.
25#
發(fā)表于 2025-3-25 23:26:22 | 只看該作者
Elliptic Regularity up to the Boundary,The aim of this chapter is to prove a Sobolev space regularity result for weak solutions of elliptic equations. This result will be used for the construction of .-strong Feller processes in the next chapter. It will be also used for the construction of the boundary local time.
26#
發(fā)表于 2025-3-26 00:48:10 | 只看該作者
Appendix,In this section we consider some useful results concerning locally compact separable metric spaces with a locally finite Borel measure .. Let (., d) be a metric space. We say that . is . if for every . ∈ . there exists an open neighborhood . of . such that . is compact.
27#
發(fā)表于 2025-3-26 05:18:17 | 只看該作者
28#
發(fā)表于 2025-3-26 12:04:35 | 只看該作者
29#
發(fā)表于 2025-3-26 13:50:17 | 只看該作者
https://doi.org/10.1007/978-3-658-05829-6Dirichlet form theory; Skorokhod decomposition; elliptic boundary value problem; finite particle system
30#
發(fā)表于 2025-3-26 20:52:03 | 只看該作者
978-3-658-05828-9Springer Fachmedien Wiesbaden 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 兰西县| 平遥县| 依安县| 柏乡县| 饶平县| 正宁县| 芒康县| 淮阳县| 尉氏县| 湟源县| 荃湾区| 汝南县| 平利县| 北碚区| 大厂| 松溪县| 古丈县| 登封市| 嘉义市| 常熟市| 乐昌市| 青海省| 平山县| 翼城县| 营口市| 宜黄县| 化隆| 涡阳县| 建宁县| 建阳市| 沛县| 巴林左旗| 扶沟县| 郯城县| 沁阳市| 章丘市| 安义县| 文成县| 嫩江县| 广宗县|