找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of the Theory of Representations; Aleksandr A. Kirillov Book 1976 Springer-Verlag Berlin Heidelberg 1976 Darstellung.Group repres

[復制鏈接]
樓主: 反抗日本
11#
發(fā)表于 2025-3-23 21:56:51 | 只看該作者
The Method of Orbitsclosely connected with a certain special finite-dimensional representation of this group. This representation acts in the dual space {{g}}* of the Lie algebra {{g}} of the group under study. We will call it a [[co-adjoint]] or briefly a [[K-representation]]
12#
發(fā)表于 2025-3-24 00:01:20 | 只看該作者
13#
發(fā)表于 2025-3-24 05:36:30 | 只看該作者
14#
發(fā)表于 2025-3-24 08:07:39 | 只看該作者
15#
發(fā)表于 2025-3-24 11:07:42 | 只看該作者
https://doi.org/10.1007/978-1-349-02154-3Proofs of the facts given in this section, along with more information, can be found in the textbook of S. Lang [39] and also in the treatise of N. Bourbaki [6].
16#
發(fā)表于 2025-3-24 15:18:40 | 只看該作者
17#
發(fā)表于 2025-3-24 22:43:08 | 只看該作者
https://doi.org/10.1007/978-981-13-3372-9Sets with structure locally like Euclidean spaces are called manifolds. This property enables us to introduce local systems of coordinates on manifolds and to employ the apparatus of mathematical analysis. A precise definition of manifold follows.
18#
發(fā)表于 2025-3-25 01:34:36 | 只看該作者
https://doi.org/10.1007/978-3-031-57683-6A set G is called a Lie group if it is a topological group and a smooth manifold for which the mapping ., given by φ(.)=. is smooth.
19#
發(fā)表于 2025-3-25 07:09:36 | 只看該作者
Jaspreet Kaur,Manishi Mukesh,Akshay AnandWe have already stated . that the term “representation” in the wide sense means a homomorphism of the group . into the group of one-to-one mappings of a certain set . onto itself.,A representation . is called . if . is a linear space and the mappings . are linear operators.
20#
發(fā)表于 2025-3-25 11:13:09 | 只看該作者
https://doi.org/10.1007/978-3-319-07944-8One of the principal problems of the theory of representations is the problem of decomposing representations of a group . into the simplest possible components.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 20:42
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镇坪县| 三门峡市| 潢川县| 榆林市| 邹平县| 都安| 尚义县| 北流市| 略阳县| 成武县| 聂拉木县| 福安市| 舞阳县| 石渠县| 南宁市| 嘉义市| 邵阳市| 周至县| 海口市| 喜德县| 灵武市| 七台河市| 开原市| 平遥县| 大埔区| 耿马| 平原县| 阜南县| 陇南市| 汕头市| 民丰县| 大厂| 聂荣县| 抚松县| 包头市| 辽源市| 尤溪县| 泉州市| 邵东县| 柞水县| 哈巴河县|