找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of the Theory of Representations; Aleksandr A. Kirillov Book 1976 Springer-Verlag Berlin Heidelberg 1976 Darstellung.Group repres

[復(fù)制鏈接]
樓主: 反抗日本
11#
發(fā)表于 2025-3-23 21:56:51 | 只看該作者
The Method of Orbitsclosely connected with a certain special finite-dimensional representation of this group. This representation acts in the dual space {{g}}* of the Lie algebra {{g}} of the group under study. We will call it a [[co-adjoint]] or briefly a [[K-representation]]
12#
發(fā)表于 2025-3-24 00:01:20 | 只看該作者
13#
發(fā)表于 2025-3-24 05:36:30 | 只看該作者
14#
發(fā)表于 2025-3-24 08:07:39 | 只看該作者
15#
發(fā)表于 2025-3-24 11:07:42 | 只看該作者
https://doi.org/10.1007/978-1-349-02154-3Proofs of the facts given in this section, along with more information, can be found in the textbook of S. Lang [39] and also in the treatise of N. Bourbaki [6].
16#
發(fā)表于 2025-3-24 15:18:40 | 只看該作者
17#
發(fā)表于 2025-3-24 22:43:08 | 只看該作者
https://doi.org/10.1007/978-981-13-3372-9Sets with structure locally like Euclidean spaces are called manifolds. This property enables us to introduce local systems of coordinates on manifolds and to employ the apparatus of mathematical analysis. A precise definition of manifold follows.
18#
發(fā)表于 2025-3-25 01:34:36 | 只看該作者
https://doi.org/10.1007/978-3-031-57683-6A set G is called a Lie group if it is a topological group and a smooth manifold for which the mapping ., given by φ(.)=. is smooth.
19#
發(fā)表于 2025-3-25 07:09:36 | 只看該作者
Jaspreet Kaur,Manishi Mukesh,Akshay AnandWe have already stated . that the term “representation” in the wide sense means a homomorphism of the group . into the group of one-to-one mappings of a certain set . onto itself.,A representation . is called . if . is a linear space and the mappings . are linear operators.
20#
發(fā)表于 2025-3-25 11:13:09 | 只看該作者
https://doi.org/10.1007/978-3-319-07944-8One of the principal problems of the theory of representations is the problem of decomposing representations of a group . into the simplest possible components.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋江市| 张家界市| 泰来县| 宁德市| 弥勒县| 丽水市| 盈江县| 古蔺县| 广饶县| 永定县| 化州市| 彭州市| 精河县| 防城港市| 淮南市| 青铜峡市| 云林县| 奉化市| 视频| 南岸区| 台南县| 鸡泽县| 舟山市| 松阳县| 溧阳市| 保定市| 衡水市| 东阳市| 于都县| 姜堰市| 岱山县| 澜沧| 临高县| 商河县| 隆化县| 礼泉县| 太仓市| 宁明县| 长阳| 兰溪市| 河东区|