找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Homotopy Theory; George W. Whitehead Textbook 1978 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: mortality
21#
發(fā)表于 2025-3-25 06:15:46 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:53 | 只看該作者
,The Role of Tomorrow’s Manager,In Chapter V we showed how to use the process of attaching cells to construct CW-complexes with desired properties. In this Chapter we shall exploit this process further, one of our aims being to show how any space can be built up, up to homotopy type, out of Eilenberg-MacLane spaces.
23#
發(fā)表于 2025-3-25 13:33:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:40:19 | 只看該作者
Postnikov Systems,In Chapter V we showed how to use the process of attaching cells to construct CW-complexes with desired properties. In this Chapter we shall exploit this process further, one of our aims being to show how any space can be built up, up to homotopy type, out of Eilenberg-MacLane spaces.
25#
發(fā)表于 2025-3-25 21:52:01 | 只看該作者
26#
發(fā)表于 2025-3-26 01:44:09 | 只看該作者
27#
發(fā)表于 2025-3-26 07:21:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:45:25 | 只看該作者
Andrew M. McCosh,Michael S. Scott Mortonin . which end at the base point; then the map .: P’(B) . . defined by . = .(0) is a fibration with . as fibre. The total space P’(.) being acyclic, the boundary operator . is an isomorphism, and the map . induces . the homomorphism
29#
發(fā)表于 2025-3-26 14:51:45 | 只看該作者
Introductory Notions,ns of homotopy theory: extension and lifting problems. The notion of hom-otopy is introduced, and its connection with the above problems discussed. This leads to a formulation of fibrations and cofibrations, which have played such a fundamental role in the development of the subject.
30#
發(fā)表于 2025-3-26 20:05:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大姚县| 黄浦区| 华蓥市| 武义县| 永福县| 广丰县| 诸暨市| 汶川县| 垦利县| 临泉县| 凯里市| 东港市| 沙田区| 广安市| 敦煌市| 林州市| 鄯善县| 合作市| 永康市| 吴江市| 凤庆县| 新宾| 乌审旗| 田阳县| 临夏县| 梅河口市| 金阳县| 靖边县| 福鼎市| 清新县| 湛江市| 永德县| 云安县| 遂平县| 滨州市| 湄潭县| 乌鲁木齐市| 兴海县| 南溪县| 砀山县| 神池县|