找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復(fù)制鏈接]
樓主: 精明
11#
發(fā)表于 2025-3-23 11:03:47 | 只看該作者
https://doi.org/10.1007/978-981-19-1794-3 routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
12#
發(fā)表于 2025-3-23 14:48:01 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:36 | 只看該作者
Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria, dynamical systems. First we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
18#
發(fā)表于 2025-3-24 18:55:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:24 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,urcations in symmetric systems, which are those systems that are invariant with respect to the representation of a certain symmetry group. After giving some general results on bifurcations in such systems, we restrict our attention to bifurcations of equilibria and cycles in the presence of the simp
20#
發(fā)表于 2025-3-24 23:32:57 | 只看該作者
Numerical Analysis of Bifurcations,. Appendix B gives some background information on the bialternate matrix product used to detect Hopf and Neimark-Sacker bifurcations. Appendix C presents numerical methods for detection of higher-order homoclinic bifurcations. The bibliographical notes in Appendix D include references to standard no
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安达市| 万荣县| 中宁县| 毕节市| 德保县| 怀仁县| 黄平县| 山东| 郎溪县| 庆城县| 湟源县| 科技| 南靖县| 即墨市| 莱西市| 涟水县| 淮南市| 鸡东县| 建平县| 溧阳市| 正镶白旗| 西昌市| 留坝县| 巩留县| 香河县| 黄骅市| 青河县| 丰宁| 东源县| 万盛区| 汶上县| 龙口市| 合阳县| 泽库县| 莱阳市| 石棉县| 汕头市| 信丰县| 乌什县| 长乐市| 渭南市|