找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復制鏈接]
樓主: 精明
11#
發(fā)表于 2025-3-23 11:03:47 | 只看該作者
https://doi.org/10.1007/978-981-19-1794-3 routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
12#
發(fā)表于 2025-3-23 14:48:01 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:36 | 只看該作者
Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria, dynamical systems. First we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
18#
發(fā)表于 2025-3-24 18:55:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:24 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,urcations in symmetric systems, which are those systems that are invariant with respect to the representation of a certain symmetry group. After giving some general results on bifurcations in such systems, we restrict our attention to bifurcations of equilibria and cycles in the presence of the simp
20#
發(fā)表于 2025-3-24 23:32:57 | 只看該作者
Numerical Analysis of Bifurcations,. Appendix B gives some background information on the bialternate matrix product used to detect Hopf and Neimark-Sacker bifurcations. Appendix C presents numerical methods for detection of higher-order homoclinic bifurcations. The bibliographical notes in Appendix D include references to standard no
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
德阳市| 嘉禾县| 杨浦区| 秦安县| 漳州市| 武乡县| 来安县| 邮箱| 广汉市| 广宁县| 永春县| 柳林县| 镇远县| 临颍县| 洮南市| 沁源县| 紫金县| 法库县| 拉萨市| 常州市| 得荣县| 巢湖市| 德保县| 通河县| 资兴市| 喜德县| 梨树县| 开阳县| 宝山区| 梁山县| 布尔津县| 南和县| 龙岩市| 武冈市| 寿阳县| 富裕县| 安吉县| 柘城县| 高唐县| 微山县| 泰顺县|