找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary and Analytic Theory of Algebraic Numbers; W?adys?aw Narkiewicz Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 A

[復(fù)制鏈接]
樓主: Gullet
11#
發(fā)表于 2025-3-23 10:54:31 | 只看該作者
https://doi.org/10.1007/978-3-322-85872-6t’s .-functions, and derive the functional equations for them. Our arguments will be based on the results of Chap. 6. Subsequent sections are devoted to asymptotic distribution of ideals and prime ideals. We shall use the tauberian theorem of Delange, an account of which is given in Appendix II, as
12#
發(fā)表于 2025-3-23 14:26:48 | 只看該作者
https://doi.org/10.1007/978-3-658-19102-3 the Kronecker-Weber theorem (Theorem 6.18) every such extension is contained in a suitable cyclotomic field .. = ?(ζ.). The least integer . with the property .?.. is called the . of ., and is denoted by .(.).S The main properties of the conductor are listed in the following proposition:
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:29 | 只看該作者
W?adys?aw NarkiewiczBrings the main principal results in the classical algebraic number theory, with the exception of class-field theory.Up-to-date extensive bibliography containing 3400 items.Each chapter ends with a se
15#
發(fā)表于 2025-3-24 02:29:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:40 | 只看該作者
17#
發(fā)表于 2025-3-24 13:24:10 | 只看該作者
Introduction - Properties of Materials,cations, and in the second we introduce the ring of adeles and the group of ideles, study their principal proprieties and perform some harmonic analysis, including the deduction of the functional equation for suitably defined zeta-functions.
18#
發(fā)表于 2025-3-24 18:39:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:42:10 | 只看該作者
Extensions,raditionally an . if . ?, and is called a . if . ≠ ?. The same applies to other notions which will arise in the sequel, and so we shall speak about, say, a . of an exten-sion, whereas by the . we shall mean the discriminant .(.), defined in Chap. 2.
20#
發(fā)表于 2025-3-25 02:13:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 平阴县| 通州市| 富川| 麟游县| 六安市| 历史| 曲水县| 定陶县| 巴塘县| 蕲春县| 盐边县| 江达县| 唐河县| 康保县| 资阳市| 和平县| 阳山县| 新源县| 桑日县| 安达市| 永德县| 大埔区| 郑州市| 徐水县| 广州市| 友谊县| 尉氏县| 关岭| 武功县| 锡林浩特市| 扶余县| 滨海县| 天峻县| 定襄县| 屏南县| 明溪县| 久治县| 正蓝旗| 霞浦县| 正阳县|