找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Topics in Differential Geometry; J. A. Thorpe Textbook 1979 Springer-Verlag New York Inc. 1979 Differentialgeometrie.Isometrie.

[復(fù)制鏈接]
樓主: cobble
51#
發(fā)表于 2025-3-30 10:23:09 | 只看該作者
Clotting Factor Antibodies (Inhibitors),We shall now consider the local behavior of curvature on an .-surface. The way in which an .-surface curves around in ?.. is measured by the way the normal direction changes as we move from point to point on the surfacc. In order to measure the rate of changc of the normal direction, we need to be able to differentiate vector fields on .-surfaces.
52#
發(fā)表于 2025-3-30 12:49:56 | 只看該作者
53#
發(fā)表于 2025-3-30 16:56:26 | 只看該作者
https://doi.org/10.1007/978-1-4614-3752-9In this chapter we shall establish two theorems which show that, locally, .-surfaces and parametrized .-surfaces are the same. In order to do this, we will need to use the following theorem from the calculus of several variables.
54#
發(fā)表于 2025-3-30 23:43:50 | 只看該作者
Dale Salwak (Professor of English)We consider now the problem of how to find the volume (area when . = 2) of an .-surface in ?... As with the length of plane curves, this is done in two steps. First we define the volume of a parametrized .-surface and then we define the volume of an .-surface in terms of local parametrizations.
55#
發(fā)表于 2025-3-31 01:19:54 | 只看該作者
Haemodialysis — a personal viewpointLet ?: . → ?.. be a parametrized .-surface in ?... A . of ? is a smooth map .: . x (??, ?) → ?.. with the property that .(.,0) = ?(.) for all . ∈ .. Thus a variation surrounds the .-surface ? with a family of singular .-surfaces ?.: . → ?.. (?? < ? < ?) defined by ? . (.) = .(., .).
56#
發(fā)表于 2025-3-31 06:18:00 | 只看該作者
Vector Fields,The tool which will allow us to study the geometry of level sets is the calculus of vector fields. In this chapter we develop some of the basic ideas.
57#
發(fā)表于 2025-3-31 09:16:40 | 只看該作者
58#
發(fā)表于 2025-3-31 13:37:37 | 只看該作者
59#
發(fā)表于 2025-3-31 19:39:18 | 只看該作者
60#
發(fā)表于 2025-4-1 00:53:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 11:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平利县| 武山县| 塔城市| 洛南县| 石棉县| 藁城市| 贞丰县| 大渡口区| 常宁市| 樟树市| 厦门市| 抚州市| 藁城市| 色达县| 棋牌| 漯河市| 青河县| 清涧县| 肥乡县| 苍山县| 柳州市| 南涧| 桦川县| 贵港市| 江孜县| 桓仁| 通州市| 达拉特旗| 武定县| 温宿县| 广平县| 西吉县| 唐海县| 前郭尔| 马公市| 贡山| 耿马| 关岭| 酉阳| 汕尾市| 偃师市|