找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 1990Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 存貨清單
31#
發(fā)表于 2025-3-26 20:58:33 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:01 | 只看該作者
33#
發(fā)表于 2025-3-27 07:24:44 | 只看該作者
Commonly Used Regional Exposureeriodic solutions. That is to say, we looked for the conditions under which nonautonomous, .-periodic differential equations give rise to subharmonic solutions when the Floquet exponents at criticality lie in the set of rational points (.. = .,. ≤.1) or, equivalently, when the Floquet multipliers at
34#
發(fā)表于 2025-3-27 10:25:01 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:23 | 只看該作者
36#
發(fā)表于 2025-3-27 21:08:59 | 只看該作者
Litigating the Rights of the ChildWe turn now to the analysis of steady bifurcating solutions of the two-dimensional autonomous problem (IV.I).
37#
發(fā)表于 2025-3-28 01:36:15 | 只看該作者
https://doi.org/10.1007/978-3-319-01872-0We wish now to make precise the sense in which one-and two-dimensional problems arise out of higher-dimensional problems, partial differential equations, and integro-differential equations by methods of projection.
38#
發(fā)表于 2025-3-28 04:35:22 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:07 | 只看該作者
Methods of Projection for General Problems of Bifurcation into Steady Solutions,We wish now to make precise the sense in which one-and two-dimensional problems arise out of higher-dimensional problems, partial differential equations, and integro-differential equations by methods of projection.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临汾市| 灯塔市| 芜湖县| 浦东新区| 樟树市| 巢湖市| 祁连县| 大埔区| 高要市| 高陵县| 陕西省| 奈曼旗| 汉寿县| 西乌珠穆沁旗| 云霄县| 贵德县| 南皮县| 上犹县| 永顺县| 文化| 大兴区| 襄城县| 舟曲县| 宝清县| 松滋市| 建德市| 丹棱县| 阿拉善盟| 鄄城县| 延长县| 乌兰浩特市| 宝丰县| 旬阳县| 环江| 临猗县| 瓦房店市| 永吉县| 博客| 青铜峡市| 长春市| 汉中市|