找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 19801st edition Springer Science+Business Media New Yo

[復(fù)制鏈接]
樓主: 注射
21#
發(fā)表于 2025-3-25 06:19:51 | 只看該作者
Bifurcation of Forced ,-Periodic Solutions into Asymptotically Quasi-Periodic Solutions,In Chapter IX we determined the conditions under which subharmonic solutions, nT-periodic solutions with integers . > 1, could bifurcate from forced T-periodic solutions.
22#
發(fā)表于 2025-3-25 10:42:53 | 只看該作者
Undergraduate Texts in Mathematicshttp://image.papertrans.cn/e/image/307422.jpg
23#
發(fā)表于 2025-3-25 12:53:12 | 只看該作者
24#
發(fā)表于 2025-3-25 16:14:26 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:35:06 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:06 | 只看該作者
https://doi.org/10.1007/978-3-476-03058-0um solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, economists, and others whose work involves understanding equilibrium solutions of nonlinear differential equations.
28#
發(fā)表于 2025-3-26 09:05:55 | 只看該作者
29#
發(fā)表于 2025-3-26 14:32:16 | 只看該作者
Koyel Bhattacharya,Sanjib Bhattacharyaroblems in the form.where U = 0 is . a solution because.In this type of problem the outside world communicates with the dynamical system governed by (XI.l)! through the imposed data (XI.1).. The dynamical system sees the outside world as precisely T-periodic and it must adjust its own evolution to fit this fact.
30#
發(fā)表于 2025-3-26 17:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大足县| 库车县| 班戈县| 神木县| 高雄县| 潜山县| 泉州市| 杨浦区| 涟水县| 垦利县| 周宁县| 东乌珠穆沁旗| 育儿| 凤凰县| 洪江市| 耒阳市| 即墨市| 库车县| 九寨沟县| 陵川县| 丰台区| 峨山| 南岸区| 巍山| 鄂托克前旗| 康马县| 安吉县| 黎平县| 清远市| 迭部县| 衢州市| 贵州省| 洞口县| 博乐市| 高要市| 缙云县| 云林县| 法库县| 彭水| 基隆市| 齐齐哈尔市|