找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementare Algebraische Geometrie; Grundlegende Begriff Klaus Hulek Textbook 2012Latest edition Der/die Herausgeber bzw. der/die Autor(en),

[復制鏈接]
樓主: intensify
11#
發(fā)表于 2025-3-23 13:32:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4534-6sie singul?r ist. Im letzten Abschnitt beschreiben wir die Gruppenstruktur auf einer glatten kubischen Kurve. Wir setzen in diesem Kapitel voraus, dass die Charakteristik von . verschieden von 2 und 3 ist.
12#
發(fā)表于 2025-3-23 15:05:14 | 只看該作者
Ebene kubische Kurven,sie singul?r ist. Im letzten Abschnitt beschreiben wir die Gruppenstruktur auf einer glatten kubischen Kurve. Wir setzen in diesem Kapitel voraus, dass die Charakteristik von . verschieden von 2 und 3 ist.
13#
發(fā)表于 2025-3-23 20:34:37 | 只看該作者
14#
發(fā)表于 2025-3-23 23:52:53 | 只看該作者
Legal Aspects of International Drug ControlIn diesem Kapitel werden projektive Variet?ten eingeführt und Morphismen zwischen projektiven Variet?ten untersucht.
15#
發(fā)表于 2025-3-24 04:11:22 | 只看該作者
Sanda Ghimpu,Victor Dan ZlatescuIn diesem Abschnitt wollen wir glatte und singul?re Punkte einer Variet?t definieren, sowie die Dimension einer Variet?t erkl?ren.
16#
發(fā)表于 2025-3-24 06:39:44 | 只看該作者
Legal Aspects of Sustainable DevelopmentIn diesem Kapitel wollen wir eine Einführung in die Theorie der algebraischen Kurven geben. Nachdem Divisoren auf Kurven definiert werden, wird gezeigt, dass jeder Hauptdivisor den Grad 0 hat. Als Anwendung erhalten wir eine Form des Satzes von Bézout. Anschlie?end diskutieren wir Linearsysteme auf Kurven und Einbettungen in den projektiven Raum.
17#
發(fā)表于 2025-3-24 13:13:30 | 只看該作者
18#
發(fā)表于 2025-3-24 15:28:51 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:12 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:00 | 只看該作者
Theorie der Kurven,In diesem Kapitel wollen wir eine Einführung in die Theorie der algebraischen Kurven geben. Nachdem Divisoren auf Kurven definiert werden, wird gezeigt, dass jeder Hauptdivisor den Grad 0 hat. Als Anwendung erhalten wir eine Form des Satzes von Bézout. Anschlie?end diskutieren wir Linearsysteme auf Kurven und Einbettungen in den projektiven Raum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
股票| 霍城县| 博白县| 盐边县| 乌苏市| 色达县| 马尔康县| 乡宁县| 丁青县| 贺兰县| 怀化市| 伽师县| 邛崃市| 新泰市| 额尔古纳市| 江安县| 洞头县| 大兴区| 四会市| 康保县| 广安市| 凯里市| 普陀区| 广汉市| 安西县| 庐江县| 巴青县| 沁源县| 芜湖市| 安阳县| 边坝县| 韶山市| 昌江| 凉山| 东阿县| 汤阴县| 盘锦市| 阳新县| 常熟市| 马鞍山市| 张家口市|