找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementare Algebraische Geometrie; Grundlegende Begriff Klaus Hulek Textbook 2012Latest edition Der/die Herausgeber bzw. der/die Autor(en),

[復(fù)制鏈接]
樓主: intensify
11#
發(fā)表于 2025-3-23 13:32:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4534-6sie singul?r ist. Im letzten Abschnitt beschreiben wir die Gruppenstruktur auf einer glatten kubischen Kurve. Wir setzen in diesem Kapitel voraus, dass die Charakteristik von . verschieden von 2 und 3 ist.
12#
發(fā)表于 2025-3-23 15:05:14 | 只看該作者
Ebene kubische Kurven,sie singul?r ist. Im letzten Abschnitt beschreiben wir die Gruppenstruktur auf einer glatten kubischen Kurve. Wir setzen in diesem Kapitel voraus, dass die Charakteristik von . verschieden von 2 und 3 ist.
13#
發(fā)表于 2025-3-23 20:34:37 | 只看該作者
14#
發(fā)表于 2025-3-23 23:52:53 | 只看該作者
Legal Aspects of International Drug ControlIn diesem Kapitel werden projektive Variet?ten eingeführt und Morphismen zwischen projektiven Variet?ten untersucht.
15#
發(fā)表于 2025-3-24 04:11:22 | 只看該作者
Sanda Ghimpu,Victor Dan ZlatescuIn diesem Abschnitt wollen wir glatte und singul?re Punkte einer Variet?t definieren, sowie die Dimension einer Variet?t erkl?ren.
16#
發(fā)表于 2025-3-24 06:39:44 | 只看該作者
Legal Aspects of Sustainable DevelopmentIn diesem Kapitel wollen wir eine Einführung in die Theorie der algebraischen Kurven geben. Nachdem Divisoren auf Kurven definiert werden, wird gezeigt, dass jeder Hauptdivisor den Grad 0 hat. Als Anwendung erhalten wir eine Form des Satzes von Bézout. Anschlie?end diskutieren wir Linearsysteme auf Kurven und Einbettungen in den projektiven Raum.
17#
發(fā)表于 2025-3-24 13:13:30 | 只看該作者
18#
發(fā)表于 2025-3-24 15:28:51 | 只看該作者
19#
發(fā)表于 2025-3-24 19:27:12 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:00 | 只看該作者
Theorie der Kurven,In diesem Kapitel wollen wir eine Einführung in die Theorie der algebraischen Kurven geben. Nachdem Divisoren auf Kurven definiert werden, wird gezeigt, dass jeder Hauptdivisor den Grad 0 hat. Als Anwendung erhalten wir eine Form des Satzes von Bézout. Anschlie?end diskutieren wir Linearsysteme auf Kurven und Einbettungen in den projektiven Raum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资阳市| 山西省| 勐海县| 甘德县| 临城县| 五大连池市| 新河县| 德令哈市| 太湖县| 上高县| 洞口县| 玉龙| 宕昌县| 新竹县| 酉阳| 彝良县| 博罗县| 开原市| 句容市| 宜君县| 蒙山县| 土默特左旗| 龙井市| 交城县| 博乐市| 齐河县| 比如县| 邯郸县| 怀宁县| 班玛县| 米脂县| 昭通市| 青海省| 江源县| 盘山县| 青河县| 贵阳市| 越西县| 噶尔县| 射洪县| 株洲市|