找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementar(st)e Gruppentheorie; Von den Gruppenaxiom Tobias Glosauer Textbook 2016 Springer Fachmedien Wiesbaden 2016 übergang Schule Hochsc

[復制鏈接]
樓主: 外表
11#
發(fā)表于 2025-3-23 11:40:51 | 只看該作者
12#
發(fā)表于 2025-3-23 14:00:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:44 | 只看該作者
14#
發(fā)表于 2025-3-23 22:45:12 | 只看該作者
https://doi.org/10.1007/978-3-7091-4738-2Wenn du das vorige Kapitel gründlich durchgearbeitet hast, sollte dir die nun folgende Definition bereits vertraut erscheinen.
15#
發(fā)表于 2025-3-24 03:16:52 | 只看該作者
https://doi.org/10.1007/978-3-662-68919-6Nachdem wir uns nun gründlich mit der abstrakten Axiomatik des Gruppenbegriffs auseinandergesetzt haben, lernen wir eine Vielzahl von (weiteren) Beispielen konkreter Gruppen kennen.
16#
發(fā)表于 2025-3-24 10:32:16 | 只看該作者
Lebensdauerberechnungen mit FEMIn diesem Kapitel verallgemeinern wir das, was wir schon von der Restklassenbildung in . kennen, auf beliebige Gruppen. Als Kr?nung erhalten wir am Ende den Satz von Lagrange, unser erstes fundamentales Resultat, das eine Aussage über die m?glichen Ordnungen von Untergruppen einer endlichen Gruppe macht.
17#
發(fā)表于 2025-3-24 10:51:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:03:51 | 只看該作者
https://doi.org/10.1007/978-3-662-36515-1Es gibt zwei Symmetrien, n?mlich die Identit?t und die Symmetrie, welche die Eckpunkte 1 und 2 vertauscht. Ob man letztere als Spiegelung . an der Mittelsenkrechten oder als Drehung . um 180o um den Mittelpunkt auffassen m?chte, ist Geschmackssache; wir w?hlen ..
19#
發(fā)表于 2025-3-24 19:44:15 | 只看該作者
20#
發(fā)表于 2025-3-25 02:24:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
桂东县| 商河县| 寿阳县| 诸暨市| 湾仔区| 丰都县| 尼玛县| 滨州市| 石渠县| 务川| 峨眉山市| 宜州市| 龙海市| 吴川市| 东辽县| 喀喇沁旗| 库车县| 恩平市| 外汇| 龙州县| 镇雄县| 道孚县| 方正县| 霍邱县| 星子县| 黔南| 房山区| 常熟市| 丹东市| 古丈县| 湘潭市| 清涧县| 龙泉市| 深水埗区| 汾西县| 商洛市| 唐山市| 泰顺县| 新建县| 鄯善县| 广宗县|