找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic States in Crystals of Finite Size; Quantum confinement Shang Yuan Ren Book 20061st edition Springer-Verlag New York 2006 Finite

[復(fù)制鏈接]
樓主: magnify
11#
發(fā)表于 2025-3-23 13:46:37 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:50 | 只看該作者
,Ebene der Schülerinnen und Schüler,ntial period and . is a positive integer.. On the basis of the theory of differential equations in Chapter 2, exact and general results on the electronic states in such an ideal finite crystal can be analytically obtained. We will see that in obtaining the results in this chapter, it is the understa
13#
發(fā)表于 2025-3-23 19:02:01 | 只看該作者
https://doi.org/10.1007/978-3-658-34021-6 this part and in Part II is that the corresponding Schr?dinger equation for the electronic states in a three-dimensional crystal is a . differential equation; therefore, now the problem is a more difficult one. This is due to the fact that relative to the solutions of ordinary differential equation
14#
發(fā)表于 2025-3-24 01:01:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:28:06 | 只看該作者
https://doi.org/10.1007/978-3-322-80900-1n one more direction. In this chapter, we are interested in the electronic states in an orthorhombic finite crystal or quantum dot that can be considered as the onedimensional Bloch waves in a rectangular quantum wire discussed in Chapter 6 further confined by two boundary surfaces perpendicularly i
16#
發(fā)表于 2025-3-24 07:25:07 | 只看該作者
17#
發(fā)表于 2025-3-24 14:08:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:22:52 | 只看該作者
Concluding Remarkss, based on a theory of differential equations approach. By ideal, it is assumed that (i) the potential . inside the low-dimensional system or the finite crystal is the same as in a crystal with translational invariance and (ii) the electronic states are completely confined in the limited size of the low-dimensional system or the finite crystal.
19#
發(fā)表于 2025-3-24 20:37:25 | 只看該作者
978-1-4419-2087-4Springer-Verlag New York 2006
20#
發(fā)表于 2025-3-25 00:43:02 | 只看該作者
Electronic States in Crystals of Finite Size978-0-387-26304-5Series ISSN 0081-3869 Series E-ISSN 1615-0430
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄石市| 邵阳县| 泸定县| 花莲县| 保靖县| 阳东县| 安乡县| 伊春市| 金山区| 营口市| 高密市| 平泉县| 海丰县| 佳木斯市| 陈巴尔虎旗| 曲水县| 中宁县| 重庆市| 德保县| 古交市| 峨眉山市| 监利县| 朝阳区| 新密市| 霍城县| 建始县| 青州市| 灵台县| 宁海县| 余庆县| 永康市| 芜湖县| 仁化县| 叶城县| 桓台县| 诸暨市| 宁德市| 榆林市| 台中市| 崇文区| 常熟市|