找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Wave Scattering on Nonspherical Particles; Basic Methodology an Tom Rother,Michael Kahnert Book 2014Latest edition Springer

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 03:41:40 | 只看該作者
Springer Series in Optical Scienceshttp://image.papertrans.cn/e/image/306045.jpg
22#
發(fā)表于 2025-3-25 09:51:32 | 只看該作者
23#
發(fā)表于 2025-3-25 12:05:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:04:33 | 只看該作者
25#
發(fā)表于 2025-3-25 20:37:03 | 只看該作者
Introduction. Technical Applications,Frequently alluded in the foregoing chapters, we will now deal in more detail with the problem of Rayleigh’s hypothesis. In 1907, Lord Rayleigh published a paper on the dynamic theory of gratings, as mentioned earlier in Chap.?1
26#
發(fā)表于 2025-3-26 03:15:21 | 只看該作者
First Approach to the Green Functions: The Rayleigh Method,In Sect. 1.3 we have considered a solution method for the scattering problems which was already used by Rayleigh to solve plane wave scattering on periodic gratings. Starting point was the approximation (1.21) of the scattered field by a finite series expansion in terms of any appropriate expansion functions.
27#
發(fā)表于 2025-3-26 05:20:54 | 只看該作者
The Rayleigh Hypothesis,Frequently alluded in the foregoing chapters, we will now deal in more detail with the problem of Rayleigh’s hypothesis. In 1907, Lord Rayleigh published a paper on the dynamic theory of gratings, as mentioned earlier in Chap.?1
28#
發(fā)表于 2025-3-26 08:27:39 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:26:17 | 只看該作者
Conduction with Heat Generation,ary incident field at the scatterer surface . in terms of the radiating eigensolutions of the Helmholtz and vector-wave equation, respectively. From this we could obtain an approximation of the scattered field everywhere in the outer region . which is also given by a series expansion in terms of the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴安盟| 正安县| 昆山市| 襄垣县| 桓台县| 房产| 临海市| 平乡县| 稻城县| 安平县| 綦江县| 临猗县| 应城市| 久治县| 竹溪县| 湖北省| 惠州市| 平江县| 博罗县| 嵊泗县| 太仆寺旗| 古田县| 浮梁县| 宁河县| 河曲县| 民乐县| 黑水县| 亳州市| 新密市| 舟山市| 博乐市| 长子县| 宿迁市| 许昌市| 翁牛特旗| 石河子市| 玛沁县| 繁昌县| 兰州市| 永平县| 岢岚县|