找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Wave Propagation in Turbulence; Evaluation and Appli Richard J. Sasiela Book 1994 Springer-Verlag Berlin Heidelberg 1994 In

[復(fù)制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 07:20:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:51:42 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:02 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:32 | 只看該作者
Mellin Transforms in , Complex Planes,al transform coordinate in which there are two or more parameters in the integrand is addressed in this chapter. I show that it can be evaluated to give a series solution. The remaining integration over the propagation path can be performed term by term in most cases. For some cases the infinite ser
25#
發(fā)表于 2025-3-25 22:32:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:09 | 只看該作者
Basic Equations for Wave Propagation in Turbulence,uations are solved with the Rytov approximation, and the main result is given in (2.85), which is the starting point for all turbulence problems considered in this book. This equation is used to find phase and log-amplitude variances. These expressions are modified to obtain expressions for the powe
27#
發(fā)表于 2025-3-26 08:20:17 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:33 | 只看該作者
29#
發(fā)表于 2025-3-26 13:26:30 | 只看該作者
Integral Evaluation with Mellin Transforms,rmalization, the wavenumber (.) integration can be expressed in a standard form depending only on zero, one, or more parameters. If no parameters are present, the integration is performed simply by table lookup as was done in the last chapter. The one parameter case requires a transformation of the
30#
發(fā)表于 2025-3-26 19:38:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌黎县| 马尔康县| 观塘区| 青铜峡市| 库车县| 门源| 漾濞| 赤壁市| 卫辉市| 张掖市| 西峡县| 乐业县| 札达县| 钟祥市| 马山县| 丹凤县| 原平市| 巴东县| 若羌县| 菏泽市| 广灵县| 南投市| 罗定市| 万载县| 达尔| 徐汇区| 沾化县| 普定县| 吉隆县| 阜新| 乌兰县| 杭锦后旗| 定陶县| 福鼎市| 安溪县| 霍邱县| 枝江市| 富阳市| 大同县| 双流县| 乳山市|