找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Applications; Carlos A. Brebbia Book 1989 Springer-Verlag Berlin, Heidelberg 1989 Boundary Elements.Electrical Motors.Inte

[復(fù)制鏈接]
樓主: External-Otitis
11#
發(fā)表于 2025-3-23 12:55:11 | 只看該作者
Three-Dimensional Magnetostatic Field Analysis Using Vector Variables,d, the alternative of direct solution of the field vectors (magnetic flux density or field strength) can become attractive. Their advantage is that no further differentiation is needed for the calculation of the field vectors after the solution of nodal values.
12#
發(fā)表于 2025-3-23 15:05:11 | 只看該作者
Three-Dimensional Magnetostatic Field Analysis Using Vector Variables, usually been computed by formulations based on the reduced scalar potential, its combination with the total scalar potential or on magnetic charges [1, 2, 3]. The magnetic vector potential has been widely used in finite element solution for three-dimensional magnetostatic fields, e.g. [4, 5]. Compa
13#
發(fā)表于 2025-3-23 21:38:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:06:22 | 只看該作者
Erratum to: Die praktische Parfumerie, usually been computed by formulations based on the reduced scalar potential, its combination with the total scalar potential or on magnetic charges [1, 2, 3]. The magnetic vector potential has been widely used in finite element solution for three-dimensional magnetostatic fields, e.g. [4, 5]. Compa
16#
發(fā)表于 2025-3-24 09:02:39 | 只看該作者
Karl-Peter Sommermann,Bert Schaffarzikal be given. Therefore, if the flux distribution is specified, it is difficult to obtain the distributions of magnetomotive force, which produce the specified field distribution, by the conventional boundary element method..In the finite element method, on the other hand, a new method called “finite
17#
發(fā)表于 2025-3-24 13:54:29 | 只看該作者
18#
發(fā)表于 2025-3-24 18:15:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:49:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商城县| 连平县| 平江县| 营山县| 乌鲁木齐县| 贵港市| 广昌县| 昌平区| 昆山市| 建始县| 亚东县| 元谋县| 莱州市| 仲巴县| 密云县| 靖宇县| 胶南市| 禹州市| 宜昌市| 临西县| 永吉县| 淮阳县| 襄城县| 乐安县| 龙陵县| 榆社县| 株洲市| 洛南县| 柳林县| 丹东市| 于都县| 云阳县| 丰台区| 如皋市| 调兵山市| 赤壁市| 綦江县| 卢氏县| 沙洋县| 来凤县| 遂平县|