找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electrical and Computer Engineering; First International Muhammet Nuri Seyman Conference proceedings 2022 ICST Institute for Computer Scie

[復(fù)制鏈接]
樓主: 閘門
41#
發(fā)表于 2025-3-28 16:57:00 | 只看該作者
42#
發(fā)表于 2025-3-28 22:04:24 | 只看該作者
43#
發(fā)表于 2025-3-29 02:09:52 | 只看該作者
44#
發(fā)表于 2025-3-29 05:33:31 | 只看該作者
https://doi.org/10.1007/978-3-476-03713-8 technique has been implemented on the Android operating system. The proposed method delivers about 3 frames per second for 360p video on the Android operating system. It is extremely feasible to increase this real-time performance by employing more powerful hardware.
45#
發(fā)表于 2025-3-29 09:36:06 | 只看該作者
https://doi.org/10.1007/978-3-642-11672-8 proposed CNN is found to give a correct classification rate (CCR) of 72.71%, the CCR reached the level of average 83.51% by using 4 channels. Also, this reduced the training time from 626 to 306?s. Therefore, the results show that usage of specific channels increases the classification accuracy and reduces the time required for training.
46#
發(fā)表于 2025-3-29 14:19:18 | 只看該作者
https://doi.org/10.1007/3-7643-7814-X a data model was created by first deriving the characteristics and values of certain types of sensors, and then a sensor application ontology was created using the OWL language. An application program was then developed using the Java programming language and the sensor application ontology developed was queried through the SPARQL query language.
47#
發(fā)表于 2025-3-29 19:29:06 | 只看該作者
48#
發(fā)表于 2025-3-29 22:41:39 | 只看該作者
49#
發(fā)表于 2025-3-30 03:06:43 | 只看該作者
50#
發(fā)表于 2025-3-30 04:21:01 | 只看該作者
Multi Channel EEG Based Biometric System with a Custom Designed Convolutional Neural Network proposed CNN is found to give a correct classification rate (CCR) of 72.71%, the CCR reached the level of average 83.51% by using 4 channels. Also, this reduced the training time from 626 to 306?s. Therefore, the results show that usage of specific channels increases the classification accuracy and reduces the time required for training.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海城市| 中江县| 阳城县| 罗山县| 长沙市| 汶川县| 新邵县| 宜丰县| 工布江达县| 中超| 宽甸| 文成县| 胶南市| 原阳县| 洛宁县| 仁化县| 兴安盟| 大厂| 太谷县| 武定县| 大化| 桂平市| 保康县| 泰宁县| 河北区| 平乐县| 团风县| 玉溪市| 新竹市| 吉水县| 平山县| 长葛市| 砀山县| 紫金县| 苏尼特左旗| 若羌县| 易门县| 宁强县| 启东市| 武隆县| 江阴市|