找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members; Applications of the Jan Awrejcewicz,Vadim A. Krysko Book 2

[復(fù)制鏈接]
樓主: HAG
51#
發(fā)表于 2025-3-30 11:03:13 | 只看該作者
52#
發(fā)表于 2025-3-30 14:19:18 | 只看該作者
53#
發(fā)表于 2025-3-30 20:20:09 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:43 | 只看該作者
https://doi.org/10.1007/978-3-642-94619-6he next section, boundary and initial conditions are attached to the differential equations. In Sect. 5.4, the existence and uniqueness of a solution as well as the convergence of the Bubnov–Galerkin method, are rigorously discussed.
55#
發(fā)表于 2025-3-31 02:28:23 | 只看該作者
Forschungsdesign und methodisches Vorgehen,ic problems of shallow shells modelled by the Kirchhoff–Love and Timoshenko theories defined earlier. In Sect. 2.1.5, theorems related to the existence and uniqueness of a general, “classical” solution to the coupled abstract program are given, and then the corresponding theorems for coupled thermoelastic problems of shallow shells are formulated.
56#
發(fā)表于 2025-3-31 08:58:59 | 只看該作者
57#
發(fā)表于 2025-3-31 10:38:39 | 只看該作者
58#
發(fā)表于 2025-3-31 17:12:38 | 只看該作者
Coupled Thermoelasticity and Transonic Gas Flow,ic problems of shallow shells modelled by the Kirchhoff–Love and Timoshenko theories defined earlier. In Sect. 2.1.5, theorems related to the existence and uniqueness of a general, “classical” solution to the coupled abstract program are given, and then the corresponding theorems for coupled thermoelastic problems of shallow shells are formulated.
59#
發(fā)表于 2025-3-31 19:25:19 | 只看該作者
,Estimation of the Errors of the Bubnov–Galerkin Method,d discussed. Finally, a prior estimate for the Bubnov–Galerkin method to a problem generalizing a class of dynamical problems of elasticity (without a heat transfer equation) for both three-dimensional and thin-walled elements of structures is given.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南开区| 西林县| 大足县| 衡水市| 昆明市| 汾阳市| 虹口区| 阿拉善右旗| 枣庄市| 阳东县| 含山县| 成都市| 蕲春县| 青河县| 富源县| 太仓市| 自治县| 溧阳市| 英山县| 平南县| 四子王旗| 梁平县| 咸阳市| 枣阳市| 桃园市| 东辽县| 南溪县| 互助| 辽宁省| 炉霍县| 清苑县| 和林格尔县| 奈曼旗| 太湖县| 仲巴县| 依安县| 巴彦淖尔市| 宜黄县| 宿州市| 巨鹿县| 岱山县|