找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einleitung in die Theorie der Invarianten linearer Transformationen auf Grund der Vektorenrechnung; E. Study Book 1923 Springer Fachmedien

[復(fù)制鏈接]
樓主: 教條
51#
發(fā)表于 2025-3-30 09:53:39 | 只看該作者
,Beispiel: Tern?re bilineare Formen mit kontragredienten Ver?nderlichen,zur Gruppe . (..) geh?rigen ganzen und rationalen Invarianten und Kovarianten, unter denen wir solche Invarianten verstehen wollen, in denen etwa neben dem Kern von . auch noch zwei Vektoren . und . vorkommen.). Es wird ein System von einigen wenigen, und ihrer Zahl nach nicht mehr zu verringernden
52#
發(fā)表于 2025-3-30 12:55:56 | 只看該作者
53#
發(fā)表于 2025-3-30 16:58:13 | 只看該作者
,Fortsetzung: Besondere F?lle,olgt aus dieser Annahme (die weiterhin mit .) bezeichnet werden soll), da? unter den symbolischen Potenzen von . drei linear-unabh?ngige Formen vorkommen, .., .., ... Wir lassen die genannte Einschr?nkung nunmehr fallen; es soll versucht werden, eine ersch?pfende Aufz?hlung aller vorliegenden M?glic
54#
發(fā)表于 2025-3-31 00:32:25 | 只看該作者
55#
發(fā)表于 2025-3-31 04:53:31 | 只看該作者
56#
發(fā)表于 2025-3-31 06:48:07 | 只看該作者
57#
發(fā)表于 2025-3-31 11:38:33 | 只看該作者
58#
發(fā)表于 2025-3-31 16:49:21 | 只看該作者
59#
發(fā)表于 2025-3-31 19:55:25 | 只看該作者
ht alle voneinander verschieden zu sein, sie sind es aber in der Regel.), und wir wollen annehmen, da? sie es wirklich sind. Unter diesen Einschr?nkungen gilt der folgende Lehrsatz (Satz von Desargues oder ?Satz von den Perspektiven Dreiecken“).
60#
發(fā)表于 2025-3-31 22:58:21 | 只看該作者
,Weitere Beispiele: Lehrs?tze von Desargues, Pascal und Brianchon,ht alle voneinander verschieden zu sein, sie sind es aber in der Regel.), und wir wollen annehmen, da? sie es wirklich sind. Unter diesen Einschr?nkungen gilt der folgende Lehrsatz (Satz von Desargues oder ?Satz von den Perspektiven Dreiecken“).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平谷区| 界首市| 浙江省| 武威市| 太康县| 九江县| 泰宁县| 拉萨市| 金阳县| 禄丰县| 澄江县| 隆昌县| 磴口县| 牟定县| 新河县| 姚安县| 隆安县| 郁南县| 卢龙县| 江油市| 安远县| 太白县| 会理县| 旺苍县| 陇川县| 巴林左旗| 麻江县| 渝北区| 娱乐| 来凤县| 庆云县| 东光县| 石城县| 盈江县| 南和县| 铁力市| 贵州省| 贡山| 伊金霍洛旗| 安仁县| 河间市|