找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing; EPASA 2015, Tsukuba, Tetsuya Sakurai,Shao-Liang Zhang,Ta

[復(fù)制鏈接]
樓主: NK871
31#
發(fā)表于 2025-3-26 23:13:54 | 只看該作者
32#
發(fā)表于 2025-3-27 02:56:29 | 只看該作者
https://doi.org/10.1007/978-3-658-16786-8e error of the matrix multiplications appearing in the algorithm. In this paper, we improve the accuracy of the approximate solutions of the Shifted systems generated by the Shifted Block BiCGGR method.
33#
發(fā)表于 2025-3-27 08:08:34 | 只看該作者
Von der Arithmetik zur Algebra,when eigenvectors are unnecessary. Our technique is also beneficial in cases where eigenvectors are necessary, because the residual norms of the target eigenpairs can be cheaply computed and monitored during each iteration step of the inner linear solver.
34#
發(fā)表于 2025-3-27 11:00:41 | 只看該作者
,“Never Was There More to Do.”,ategorize the recent advances in this field from the perspective of compute-memory tradeoff, which has not been considered in much detail in this area. Benchmark tests reveal that there is a large difference in the memory consumption and performance between the different methods.
35#
發(fā)表于 2025-3-27 16:56:58 | 只看該作者
Numerical Integral Eigensolver for a Ring Region on the Complex Plane,avoid a decrease in the computational accuracy of the eigenpairs resulting from locating the quadrature points near the eigenvalues. We implement the proposed method in the SLEPc library, and examine its performance on a supercomputer cluster with many-core architecture.
36#
發(fā)表于 2025-3-27 18:01:54 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:16 | 只看該作者
Accuracy Improvement of the Shifted Block BiCGGR Method for Linear Systems with Multiple Shifts ande error of the matrix multiplications appearing in the algorithm. In this paper, we improve the accuracy of the approximate solutions of the Shifted systems generated by the Shifted Block BiCGGR method.
38#
發(fā)表于 2025-3-28 05:52:13 | 只看該作者
39#
發(fā)表于 2025-3-28 09:44:36 | 只看該作者
40#
發(fā)表于 2025-3-28 12:05:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峻县| 平顶山市| 尼玛县| 山西省| 顺昌县| 长宁县| 荃湾区| 乐至县| 溆浦县| 阳新县| 灌云县| 防城港市| 山阳县| 台山市| 武夷山市| 襄樊市| 铜陵市| 门头沟区| 射洪县| 常熟市| 昂仁县| 东源县| 安国市| 寿宁县| 易门县| 乐安县| 临沧市| 宁国市| 德庆县| 阿拉善左旗| 和龙市| 大姚县| 德安县| 绥宁县| 镶黄旗| 辽宁省| 儋州市| 德保县| 崇左市| 松桃| 泗阳县|