找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Algorithms for Global Optimization Methods in Computer Vision; International Dagstu Andrés Bruhn,Thomas Pock,Xue-Cheng Tai Confer

[復(fù)制鏈接]
樓主: 螺絲刀
21#
發(fā)表于 2025-3-25 05:00:01 | 只看該作者
22#
發(fā)表于 2025-3-25 10:14:58 | 只看該作者
A Smoothing Descent Method for Nonconvex TV,-Models,nging from an analytical as well as numerical point of view. In this work a smoothing descent method with provable convergence properties is proposed for computing stationary points of the underlying variational problem. Numerical experiments are reported to illustrate the effectiveness of the new method.
23#
發(fā)表于 2025-3-25 13:12:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:31:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:18:07 | 只看該作者
26#
發(fā)表于 2025-3-26 02:00:09 | 只看該作者
Gesichts- und Kieferverletzungen, sensing in magnetic resonance (MR) imaging applications. The numerical results show that our algorithm is fast and efficient in restoring blurred images that are corrupted by impulse noise, and also in reconstructing MR images from very few .-space data.
27#
發(fā)表于 2025-3-26 04:25:31 | 只看該作者
Fast Regularization of Matrix-Valued Images,er regularization scheme for matrix-valued functions. We demonstrate the effectiveness of our method for denoising of several group-valued image types, with data in ., ., and ., and discuss its convergence properties.
28#
發(fā)表于 2025-3-26 12:11:16 | 只看該作者
29#
發(fā)表于 2025-3-26 13:25:18 | 只看該作者
30#
發(fā)表于 2025-3-26 18:16:24 | 只看該作者
Fast Regularization of Matrix-Valued Images,imation of diffusion tensors or rigid motions is crucial for higher-level computer vision tasks. In this chapter we describe a novel method for efficient regularization of matrix- and group-valued images. Using the augmented Lagrangian framework we separate the total-variation regularization of matr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 永胜县| 双桥区| 金阳县| 阿克苏市| 于都县| 阿勒泰市| 环江| 岐山县| 井冈山市| 四子王旗| 揭西县| 抚宁县| 麻江县| 张家界市| 宁都县| 枣阳市| 临城县| 神农架林区| 洛浦县| 新昌县| 县级市| 阿荣旗| 隆安县| 德江县| 巴马| 新绛县| 石嘴山市| 蓬溪县| 健康| 双辽市| 湖北省| 绿春县| 玉田县| 枞阳县| 安福县| 东兰县| 册亨县| 西乡县| 论坛| 和平县|