找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[復(fù)制鏈接]
樓主: infection
31#
發(fā)表于 2025-3-27 00:52:41 | 只看該作者
Michel Denuit,Donatien Hainaut,Julien TrufinProvides an exhaustive and self-contained presentation of neural networks applied to insurance.Can be used as course material or for self-study.Features a rigorous statistical analysis of neural netwo
32#
發(fā)表于 2025-3-27 04:46:11 | 只看該作者
Springer Actuarialhttp://image.papertrans.cn/e/image/302812.jpg
33#
發(fā)表于 2025-3-27 09:18:52 | 只看該作者
Feed-Forward Neural Networks,ward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
34#
發(fā)表于 2025-3-27 10:13:57 | 只看該作者
35#
發(fā)表于 2025-3-27 15:30:39 | 只看該作者
Feed-Forward Neural Networks,ward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
36#
發(fā)表于 2025-3-27 21:15:36 | 只看該作者
Bayesian Neural Networks and GLM,we cannot rely anymore on asymptotic properties of maximum likelihood estimators to approximate confidence intervals. Applying the Bayesian learning paradigm to neural networks or to generalized linear models results in a powerful framework that can be used for estimating the density of predictors.
37#
發(fā)表于 2025-3-27 22:45:50 | 只看該作者
38#
發(fā)表于 2025-3-28 06:04:28 | 只看該作者
Dimension-Reduction with Forward Neural Nets Applied to Mortality,lity. These networks contains a hidden layer, called bottleneck, that contains a few nodes compared to the previous layers. The output signals of neurons in the bottleneck carry a summarized information that aggregates input signals in a non-linear way. Bottleneck networks offer an interesting alter
39#
發(fā)表于 2025-3-28 10:12:27 | 只看該作者
40#
發(fā)表于 2025-3-28 13:27:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察哈| 晋江市| 文化| 垫江县| 潮州市| 黄大仙区| 岢岚县| 阜新| 安仁县| 利辛县| 德州市| 竹溪县| 太保市| 博爱县| 金坛市| 加查县| 林口县| 嘉禾县| 买车| 浠水县| 和平区| 丁青县| 林州市| 金沙县| 黎城县| 平塘县| 永吉县| 黑水县| 白山市| 新乡市| 黄大仙区| 灯塔市| 汉源县| 岳西县| 揭东县| 板桥市| 定襄县| 高青县| 疏附县| 抚远县| 通榆县|