找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[復(fù)制鏈接]
樓主: infection
11#
發(fā)表于 2025-3-23 12:03:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:30:55 | 只看該作者
Bayesian Neural Networks and GLM,nt of our a priori knowledge about parameters based on Markov Chain Monte Carlo methods. In order to explain those methods that are based on simulations, we need to review the main features of Markov chains.
13#
發(fā)表于 2025-3-23 21:52:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:09 | 只看該作者
Self-organizing Maps and k-Means Clustering in Non Life Insurance,curacy of the prediction. In this situation, the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Self-organizing maps offer an elegant solution to segment explanatory variables and to detect dependence among covariates.
15#
發(fā)表于 2025-3-24 02:27:30 | 只看該作者
Textbook 2019neously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible...Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-for
16#
發(fā)表于 2025-3-24 06:36:45 | 只看該作者
2523-3262 udy.Features a rigorous statistical analysis of neural netwo.This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a s
17#
發(fā)表于 2025-3-24 14:22:06 | 只看該作者
18#
發(fā)表于 2025-3-24 14:58:48 | 只看該作者
Das Rezidiv in der gyn?kologischen Onkologieward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
19#
發(fā)表于 2025-3-24 19:57:31 | 只看該作者
Neues Selbstbild und Rollenprofilwe cannot rely anymore on asymptotic properties of maximum likelihood estimators to approximate confidence intervals. Applying the Bayesian learning paradigm to neural networks or to generalized linear models results in a powerful framework that can be used for estimating the density of predictors.
20#
發(fā)表于 2025-3-25 02:53:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叶城县| 福泉市| 平凉市| 康平县| 阜康市| 扶沟县| 孟津县| 昌图县| 宜良县| 通许县| 河东区| 米易县| 读书| 克东县| 马龙县| 库伦旗| 越西县| 栾川县| 墨脱县| 江安县| 无极县| 凤阳县| 宣汉县| 雅安市| 彝良县| 苗栗县| 鹤岗市| 清徐县| 苍南县| 南阳市| 化德县| 尤溪县| 武城县| 大足县| 合江县| 丰城市| 虞城县| 阿拉善左旗| 扶绥县| 新乡市| 盘山县|