找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
21#
發(fā)表于 2025-3-25 04:46:46 | 只看該作者
,Euclid’s Algorithm,ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?, the ., which are commonly called the ..
22#
發(fā)表于 2025-3-25 08:07:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:45:17 | 只看該作者
,Polynomial GCD’s Classical Algorithms,ons with rational functions (quotients of polynomials) require a GCD to reduce the fraction to lowest terms. However, computing polynomial GCD’s is significantly more difficult than the arithmetic calculations discussed in Chapter 7.
24#
發(fā)表于 2025-3-25 16:06:48 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:57 | 只看該作者
26#
發(fā)表于 2025-3-26 03:22:21 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:19 | 只看該作者
The Springer International Series in Engineering and Computer Sciencehttp://image.papertrans.cn/e/image/302799.jpg
29#
發(fā)表于 2025-3-26 15:14:48 | 只看該作者
Effective Polynomial Computation978-1-4615-3188-3Series ISSN 0893-3405
30#
發(fā)表于 2025-3-26 17:31:52 | 只看該作者
https://doi.org/10.1007/978-3-642-99649-8ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?, the ., which are commonly called the ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵定县| 桦南县| 建水县| 临湘市| 重庆市| 合水县| 安仁县| 宁津县| 资溪县| 浮梁县| 乌拉特后旗| 丹江口市| 措勤县| 瑞金市| 洱源县| 凯里市| 凤冈县| 乌什县| 富顺县| 当涂县| 且末县| 开封市| 福泉市| 泸西县| 忻州市| 额济纳旗| 高青县| 丘北县| 阿荣旗| 株洲市| 泽普县| 沧州市| 邵东县| 桂林市| 屏东县| 龙江县| 米易县| 留坝县| 河津市| 丰台区| 忻城县|