找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
21#
發(fā)表于 2025-3-25 06:42:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:46 | 只看該作者
https://doi.org/10.1007/978-3-476-03489-2y ingredient in this definition is the notion of a specific morphism between hyperdeformation retracts, called a .. After defining mould squares, effective fibrations are defined as arrows equipped with a right-lifting property with respect to a triple category of hyperdeformation retracts and mould
24#
發(fā)表于 2025-3-25 16:33:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:07 | 只看該作者
https://doi.org/10.1007/978-3-662-39800-5n which the effective cofibrations are the left maps. The right maps in this AWFS will be called the effective trivial Kan fibrations. We show that this class of effective trivial Kan fibrations is cofibrantly generated by a small double category, local and coincides with the usual class of trivial
26#
發(fā)表于 2025-3-26 04:07:55 | 只看該作者
https://doi.org/10.1007/978-3-642-51999-4us that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
27#
發(fā)表于 2025-3-26 06:31:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:04 | 只看該作者
29#
發(fā)表于 2025-3-26 16:37:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:50 | 只看該作者
https://doi.org/10.1007/978-3-642-51999-4us that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 栾川县| 顺昌县| 嘉峪关市| 龙里县| 东乌珠穆沁旗| 韩城市| 昭觉县| 康马县| 延安市| 焦作市| 南通市| 武邑县| 淅川县| 同仁县| 康定县| 莎车县| 定边县| 炎陵县| 二连浩特市| 平昌县| 商城县| 宁陵县| 昭通市| 江阴市| 曲麻莱县| 夹江县| 上虞市| 鲁甸县| 伊宁市| 慈溪市| 梁平县| 库尔勒市| 灵宝市| 水城县| 阳原县| 和平县| 于田县| 闵行区| 建始县| 闵行区|