找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
11#
發(fā)表于 2025-3-23 10:23:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:44:44 | 只看該作者
PreliminariesIn this chapter we introduce the main theoretical framework in which our theory of effective fibrations is embedded. Abstractly put, we are studying and constructing new notions of . and . on a category ..
13#
發(fā)表于 2025-3-23 19:13:09 | 只看該作者
Simplicial Sets as a Symmetric Moore CategoryIn this chapter we equip the category of simplicial with the structure of a symmetric Moore category. For this we use the simplicial Moore path functor originally defined by Clemens Berger, Richard Garner and the first author.
14#
發(fā)表于 2025-3-24 00:11:17 | 只看該作者
Mould Squares in Simplicial SetsIn this chapter we embark on the study of the effective Kan fibrations in simplicial sets defined using the dominance and symmetric Moore structure on simplicial sets that we established in the previous chapters. The main result of this chapter is that these effective Kan fibrations are cofibrantly generated by a small triple category.
15#
發(fā)表于 2025-3-24 03:37:28 | 只看該作者
16#
發(fā)表于 2025-3-24 07:29:14 | 只看該作者
ConclusionIn this final chapter we would like to take stock of the properties of effective Kan fibrations that we have established and outline some directions for future research.
17#
發(fā)表于 2025-3-24 13:54:09 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:38:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:13:26 | 只看該作者
https://doi.org/10.1007/978-3-658-17888-8 factorisation system will be shown to be the class of . defined by the dominance, while the right class (algebras) is called the class of .. Proposition . can also be found in Bourke and Garner [.]. The rest of the chapter studies the (double) category of effective cofibrations a bit more closely a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
偏关县| 汝州市| 曲麻莱县| 和顺县| 全州县| 西畴县| 新巴尔虎左旗| 苏尼特右旗| 即墨市| 杂多县| 楚雄市| 盐城市| 横峰县| 梁山县| 临汾市| 山东省| 陆良县| 定兴县| 华容县| 牡丹江市| 泸水县| 夹江县| 海兴县| 镶黄旗| 达州市| 嘉定区| 长顺县| 闻喜县| 绥化市| 盈江县| 句容市| 华亭县| 南昌市| 习水县| 怀柔区| 鱼台县| 舟曲县| 北辰区| 吉木乃县| 鹰潭市| 樟树市|