找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Econometrics and Data Science; Apply Data Science T Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Data Science.Econometrics.Machin

[復制鏈接]
查看: 31752|回復: 44
樓主
發(fā)表于 2025-3-21 19:18:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Econometrics and Data Science
副標題Apply Data Science T
編輯Tshepo Chris Nokeri
視頻videohttp://file.papertrans.cn/302/301461/301461.mp4
概述Simplifies the economic research process from data acquisition to model development and performance evaluation.Introduces the use of mediating variables and ways of creating models that study multiple
圖書封面Titlebook: Econometrics and Data Science; Apply Data Science T Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Data Science.Econometrics.Machin
描述Get up to speed on the application of machine learning approaches in macroeconomic research. This book brings together economics and data science..Author Tshepo Chris Nokeri begins by introducing you to covariance analysis, correlation analysis, cross-validation, hyperparameter optimization, regression?analysis, and residual analysis. In addition, he presents an approach to contend with multi-collinearity. He then debunks a time series model recognized as the additive model. He reveals a technique for binarizing an economic feature to perform classification analysis using logistic regression. He brings in the Hidden Markov Model, used to discover hidden patterns and growth in the world economy. The author demonstrates unsupervised machine learning techniques such as principal component analysis and?cluster analysis. Key deep learning concepts and ways of?structuring artificial neural networks are explored along with training them and assessing their performance. The Monte Carlo simulation technique is applied to stimulate the purchasing power of money in an?economy. Lastly, the Structural Equation Model (SEM) is considered to integrate correlation analysis, factor analysis, multiva
出版日期Book 2022
關(guān)鍵詞Data Science; Econometrics; Machine learning; Statistics; Deep Learning; Neural Networks; Time Series Anal
版次1
doihttps://doi.org/10.1007/978-1-4842-7434-7
isbn_softcover978-1-4842-7433-0
isbn_ebook978-1-4842-7434-7
copyrightTshepo Chris Nokeri 2022
The information of publication is updating

書目名稱Econometrics and Data Science影響因子(影響力)




書目名稱Econometrics and Data Science影響因子(影響力)學科排名




書目名稱Econometrics and Data Science網(wǎng)絡(luò)公開度




書目名稱Econometrics and Data Science網(wǎng)絡(luò)公開度學科排名




書目名稱Econometrics and Data Science被引頻次




書目名稱Econometrics and Data Science被引頻次學科排名




書目名稱Econometrics and Data Science年度引用




書目名稱Econometrics and Data Science年度引用學科排名




書目名稱Econometrics and Data Science讀者反饋




書目名稱Econometrics and Data Science讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:30:27 | 只看該作者
https://doi.org/10.1007/978-1-4842-7434-7Data Science; Econometrics; Machine learning; Statistics; Deep Learning; Neural Networks; Time Series Anal
地板
發(fā)表于 2025-3-22 06:30:26 | 只看該作者
978-1-4842-7433-0Tshepo Chris Nokeri 2022
5#
發(fā)表于 2025-3-22 10:43:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:51:57 | 只看該作者
Inflation Simulation, Carlo simulation model. In particular, it employs this model to determine the probability of a change in the country’s central government debt across multiple trials. This method is useful when handling sequential data.
7#
發(fā)表于 2025-3-22 19:28:24 | 只看該作者
8#
發(fā)表于 2025-3-22 22:53:56 | 只看該作者
9#
發(fā)表于 2025-3-23 04:53:31 | 只看該作者
Asian/American Curricular Epistemicideds, which paves the way for the econometrics field. It also covers the relevance of econometrics in devising and revising the economic policies of a nation. It then summarizes machine learning, deep learning, and structural equation modeling. To conclude, it reveals ways to extract macroeconomic data using a standard Python library.
10#
發(fā)表于 2025-3-23 08:58:53 | 只看該作者
https://doi.org/10.1007/978-3-662-05850-3 Carlo simulation model. In particular, it employs this model to determine the probability of a change in the country’s central government debt across multiple trials. This method is useful when handling sequential data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
且末县| 安溪县| 扶余县| 互助| 榕江县| 乌拉特后旗| 陕西省| 潮安县| 石泉县| 建湖县| 巨鹿县| 治多县| 华池县| 溆浦县| 平乡县| 霍山县| 蓬安县| 斗六市| 浦北县| 武邑县| 湖口县| 玛多县| 荣成市| 恭城| 丹阳市| 托里县| 义乌市| 元朗区| 连江县| 蓬溪县| 三门峡市| 尼勒克县| 桐乡市| 晴隆县| 南华县| 敖汉旗| 潢川县| 习水县| 临潭县| 深泽县| 灯塔市|