找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: 雜技演員
31#
發(fā)表于 2025-3-26 23:52:56 | 只看該作者
ts look exactly the same. There are only two possible behaviours for such orbits. Either they are all dense on the circle, or else they are all periodic with the same period. This dichotomy can be read off from the angle by which points on the circle are rotated. The ratio of this angle to a full turn is called the ..
32#
發(fā)表于 2025-3-27 04:53:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:47:56 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:46 | 只看該作者
https://doi.org/10.1007/978-3-8274-2908-7answer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
35#
發(fā)表于 2025-3-27 16:05:56 | 只看該作者
36#
發(fā)表于 2025-3-27 21:19:27 | 只看該作者
Lecture Notes in Electrical Engineering a seminal paper published in 1932, Denjoy (J. Math. Pure et Appl 11:333–375, 1932) proved that every sufficiently smooth circle diffeomorphism . without periodic points is topologically equivalent to an irrational rotation. Here, the expression “sufficiently smooth” means that . is . and . is a fun
37#
發(fā)表于 2025-3-27 23:10:26 | 只看該作者
38#
發(fā)表于 2025-3-28 02:57:34 | 只看該作者
39#
發(fā)表于 2025-3-28 06:58:47 | 只看該作者
Edson de Faria,Pablo GuarinoExplores recent developments of invertible circle maps in one-dimensional dynamics.Focuses on global diffeomorphisms and smooth homeomorphisms with critical points.Aimed at graduate students and young
40#
發(fā)表于 2025-3-28 12:07:38 | 只看該作者
IMPA Monographshttp://image.papertrans.cn/e/image/284851.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖口县| 和平县| 大邑县| 万安县| 且末县| 慈利县| 白玉县| 富民县| 阿图什市| 肃宁县| 平凉市| 梅河口市| 新民市| 勃利县| 新津县| 汉沽区| 犍为县| 周口市| 凌海市| 永丰县| 烟台市| 安新县| 共和县| 孟津县| 北京市| 信丰县| 莱芜市| 汪清县| 密山市| 连城县| 焦作市| 高尔夫| 青冈县| 纳雍县| 海晏县| 信阳市| 新宾| 兴安盟| 金门县| 射阳县| 玛沁县|