找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Theory and Applications; 5th International Co Ana Fred,Allel Hadjali,Carlo Sansone Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
樓主: 根深蒂固
31#
發(fā)表于 2025-3-26 21:54:48 | 只看該作者
Conference proceedings 2024ions, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024.?..The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intellig
32#
發(fā)表于 2025-3-27 02:53:36 | 只看該作者
1865-0929 eviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.?.978-3-031-66693-3978-3-031-66694-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
33#
發(fā)表于 2025-3-27 07:26:05 | 只看該作者
34#
發(fā)表于 2025-3-27 10:47:52 | 只看該作者
Erleichterung der Schuldenlast,ents show that the presented approach works for various human motions and input representations, such as the SMPL pose parameters, trajectory data, and skeleton joints. We achieve higher accuracy compared to the state-of-the-art methods on all three datasets.
35#
發(fā)表于 2025-3-27 16:43:07 | 只看該作者
larity, resulting in imbalanced datasets for training deep-learning models. To address this issue, a class balancing technique is proposed and applied to all datasets to improve consistency and results. Ensemble techniques are utilized to combine all of the model predictions to produce the highest F1-scores for all three labels.
36#
發(fā)表于 2025-3-27 18:30:06 | 只看該作者
Action Conditioned Attention Encoder-Decoder and?Discriminator for?Human Motion Generationents show that the presented approach works for various human motions and input representations, such as the SMPL pose parameters, trajectory data, and skeleton joints. We achieve higher accuracy compared to the state-of-the-art methods on all three datasets.
37#
發(fā)表于 2025-3-27 23:33:42 | 只看該作者
38#
發(fā)表于 2025-3-28 05:07:11 | 只看該作者
39#
發(fā)表于 2025-3-28 09:00:17 | 只看該作者
A Deep Learning-Based Plant Disease Detection and Classification for Arabica Coffee Leavess reducing the yield and adversely affecting the quality of the coffee. Detecting and controlling these diseases in their early stages represent formidable challenges, since traditional methods rely on visual observation by experts and often fail in accurate diagnosis. Machine learning (ML) techniqu
40#
發(fā)表于 2025-3-28 13:46:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉首市| 甘洛县| 大城县| 麻城市| 昌乐县| 天等县| 浙江省| 通海县| 镇江市| 永登县| 临澧县| 阳泉市| 延长县| 洪江市| 东丽区| 万宁市| 靖远县| 循化| 藁城市| 安丘市| 六盘水市| 宣化县| 济源市| 留坝县| 阿瓦提县| 原阳县| 略阳县| 德州市| 乐至县| 临西县| 阳谷县| 堆龙德庆县| 从江县| 石景山区| 东平县| 久治县| 宁夏| 和静县| 焉耆| 卓尼县| 泾川县|